精英家教网 > 高中数学 > 题目详情

【题目】海上某货轮在A处看灯塔B在货轮的北偏东75°,距离为12海里;在A处看灯塔C在货轮的北偏西30°,距离为8海里;货轮向正北由A处行驶到D处时看灯塔B在货轮的北偏东120°.(要画图)
(1)A处与D处之间的距离;
(2)灯塔C与D处之间的距离.

【答案】解:(1)在△ABD中,∠ADB=60°,∴∠B=45°,
由正弦定理,得
即AD==24(海里),
(2)在△ACD中,∵AC=8,∠CAD=30°,
∴由余弦定理得CD2=AD2+AC2﹣2ADACcos∠CAD=242+(82﹣2×24×8cos30°=192,
解得:CD=8≈14(海里),
则灯塔C与D之间的距离约为14海里.

【解析】(1)在三角形ABD中,利用正弦定理列出关系式,将各自的值代入求出AD的长,即可确定出货船的航行速度;
(2)在三角形ACD中,利用余弦定理列出关系式,将各自的值代入计算即可求出CD的长.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】由大于0的自然数构成的等差数列{an},它的最大项为26,其所有项的和为70;
(1)求数列{an}的项数n;
(2)求此数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=log2(x+1),g(x)=log2(3x+1).
(1)求出使g(x)≥f(x)成立的x的取值范围;
(2)在(1)的范围内求y=g(x)﹣f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知海岛A到海岸公路BC的距离AB=50km,B,C间的距离为100km,从A到C必须先坐船到BC上的某一点D,航速为25km/h,再乘汽车到C,车速为50km/h,记∠BDA=θ
(1)试将由A到C所用的时间t表示为θ的函数t(θ);
(2)问θ为多少时,由A到C所用的时间t最少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,侧面底面,且 的中点.

(Ⅰ)求证: 平面

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,直线的参数方程为为参数),以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,且直线经过曲线的左焦点

(1)求直线的普通方程;

(2)设曲线的内接矩形的周长为,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)是定义在R上的偶函数,在(﹣∞,0]上单调递减,且f(﹣4)=0,则使得x|f(x)+f(﹣x)|<0的x的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4—5:不等式选讲]

已知.

(1)若的解集为,求的值;

(2)若不等式恒成立,求实数的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物,我国PM2.5标准采用世卫组织设定的最宽限值,即PM2.5日均值在35微克/立方米以下空气质量为一级;在35微克/立方米~75微克/立方米之间空气质量为二级;在75微克/立方米以上空气质量为超标.某市环保局从市区2017年上半年每天的PM2.5监测数据中随机抽取15天的数据作为样本,监测值如茎叶图所示(十位为茎,个位为叶)

(1)从这15天的数据中任取一天,求这天空气质量达到一级的概率;

(2)从这15天的数据中任取3天的数据,记表示其中空气质量达到一级的天数,求的分布列;

(3)以这15天的PM2.5的日均值来估计一年的空气质量情况,(一年按360天来计算),则一年中大约有多少天的空气质量达到一级.

查看答案和解析>>

同步练习册答案