精英家教网 > 高中数学 > 题目详情

【题目】某年级位同学参加语文和数学两门课的考试,每门课的考分从0100. 假如考试的结果没有两位同学的成绩是完全相同的(即至少有一门课的成绩不同). 另外,“甲比乙好”是指同学甲的语文和数学的考分均分别高于同学乙的语文和数学的考分. 试问:当最小为何值时,必存在三位同学(设为甲、乙、丙),有甲比乙好,乙比丙好.

【答案】401

【解析】

建立平面直角坐标系.

若一位同学的成绩语文为分,数学为分,令其对应平面上的整点,称为“成绩点”.

于是,位同学的考试结果映射到平面上是在范围内的个成绩点.

考虑平面上201条直线:.

若一条直线上有三个成绩点,即表示存在三位同学甲、乙、丙,有甲比乙好,乙比丙好.

显然,直线每条至多只能有一个成绩点;直线每条至多只能有两个成绩点.

因为,所以,当时,必有一条直线有三个成绩点.

从而,的最小值.

令集合.

显然,,且在中不存在三个成绩点在同一条直线上.

.从而,.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】10名选手,他们的积分分别为9,8,7,6,5,4,3,2,1,0,名次分别为第1,2,3,4,5,6,7,8,9,10.现进行单循环比赛即任意两名选手之间都恰进行一场比赛,且每场比赛都要分出胜负若名次靠前的选手胜了名次靠后的选手,则胜者得1分,负者得0若名次靠后的选手胜了名次靠前的选手,则胜者得2分,负者得0全部比赛结束后计算每名选手的累计积分即这次单循环所得的分数与之前的积分相加所得的和,并根据累计积分进行重新排名,求新的冠军累计积分的最小值允许名次并列).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个盒里装有大小均匀的个小球,其中有红色球个,编号分别为白色球, 编号分别为, 从盒子中任取个小球假设取到任何—个小球的可能性相).

1求取出的个小球中,含有编的小球的概率

2在取出的个小球中, 小球编大值设为机变的分布列

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的是( )

A. 若命题均为真命题,则命题为真命题

B. “若,则”的否命题是“若

C. ,“”是“”的充要条件

D. 命题”的否定为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在平行四边形中,,以对角线为折痕把折起,使点到图2所示点的位置,使得.

(Ⅰ)求证:平面平面

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线与抛物线相交于不同的两点.

(1)如果直线过抛物线的焦点,求的值;

(2)如果,证明直线必过一定点,并求出该定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某学校准备修建一个面积为2400平方米的矩形活动场地(图中ABCD)的围栏,按照修建要求,中间用围墙EF隔开,使得ABEF为矩形,EFCD为正方形,设米,已知围墙(包括EF)的修建费用均为每米500元,设围墙(包括EF)的修建总费用为y元.

(1)求出y关于x的函数解析式及x的取值范围;

(2)当x为何值时,围墙(包括EF)的修建总费用y最小?并求出y的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】自出生之日起,人的情绪、体力、智力等心理、生理状况就呈周期变化,变化由线为.根据心理学家的统计,人体节律分为体力节律、情绪节律和智力节律三种.这些节律的时间周期分别为23天、28天、33.每个节律周期又分为高潮期、临界日和低潮期三个阶段.以上三个节律周期的半数为临界日,这就是说11.5天、14天、16.5天分别为体力节律、情绪节律和智力节律的临界日.临界日的前半期为高潮期,后半期为低潮期.生日前一天是起始位置(平衡位置),已知小英的生日是2003320日(每年按365天计算).

1)请写出小英的体力、情绪和智力节律曲线的函数;

2)试判断小英在2019422日三种节律各处于什么阶段,当日小英是否适合参加某项体育竞技比赛?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】点为圆上的动点轴上的投影为动点满足动点的轨迹为.

(Ⅰ)求的方程

(Ⅱ)设的左顶点为若直线与曲线交于两点不是左右顶点),且满足求证直线恒过定点并求出该定点的坐标.

查看答案和解析>>

同步练习册答案