分析 先求出F(x)的表达式,求出F(x)的导数,通过讨论a是范围,确定函数F(x)的单调性,从而求出F(x)在[1,2]上的最大值即可.
解答 解:F(x)=f(x)-g(x)=x2+ax+b-lnx,
F′(x)=2x+a-$\frac{1}{x}$=$\frac{{2x}^{2}+ax-1}{x}$,x∈[1,2],
令h(x)=2x2+ax-1,对称轴x=-$\frac{a}{4}$,
而h(1)=1+a,h(2)=7+2a,
①当a≥-1时:x=-$\frac{a}{4}$≤$\frac{1}{4}$,
h(x)在[1,2]递增,h(1)≥0,
∴F′(x)≥0在x∈[1,2]恒成立,
∴F(x)在[1,2]单调递增,
F(x)max=F(2)=7+2a,
②当-$\frac{7}{2}$≤a<-1时,对称轴x=-$\frac{a}{4}$在区间[1,2]上,
此时,h(1)<0,h(2)>0,
F(x)在[1,2]先减后增,
∴F(x)max=F(1)或F(2),
③a<-$\frac{7}{2}$时:h(1)<0,h(2)<0,
即F′(x)<0在[1,2]恒成立,
∴F(x)在[1,2]递减,
F(x)max=F(1)=1+a.
点评 本题考查了二次函数的单调性、最值问题,考查导数的应用,分类讨论,是一道中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 8 | B. | 10 | C. | 12 | D. | 14 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 2$\sqrt{3}$ | B. | 4$\sqrt{3}$ | C. | 8$\sqrt{3}$ | D. | 16$\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com