精英家教网 > 高中数学 > 题目详情
11.已知a,b为正数,且直线x-(2b-3)y+6=0与直线2bx+ay-5=0互相垂直,则2a+3b的最小值为$\frac{25}{2}$.

分析 由直线垂直可得ab的式子,变形可得$\frac{3}{2b}$+$\frac{1}{a}$=1,进而可得(2a+3b)=(2a+3b)($\frac{3}{2b}$+$\frac{1}{a}$)由基本不等式求最值可得.

解答 解:∵直线x-(2b-3)y+6=0与直线2bx+ay-5=0互相垂直,
∴2b-(2b-3)a=0,
∴3a+2b=2ab,两边同除以ab可得$\frac{3}{2b}$+$\frac{1}{a}$=1,
∵a,b都是正实数,
∴2a+3b=(2a+3b)($\frac{3}{2b}$+$\frac{1}{a}$)=2+$\frac{9}{2}$+$\frac{3a}{b}$+$\frac{3b}{a}$≥$\frac{13}{2}$+2$\sqrt{\frac{3b}{a}•\frac{3a}{b}}$=$\frac{13}{2}$+6=$\frac{25}{2}$,当且仅当$\frac{3b}{a}$=$\frac{3a}{b}$即a=b=$\frac{5}{2}$时,上式取到最小值$\frac{25}{2}$,
故答案为:$\frac{25}{2}$.

点评 本题考查直线的一般式方程和垂直关系,涉及基本不等式求最值,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.如图,已知正方形ABCD和矩形ACEF所在的平面互相垂直,$AB=\sqrt{2},AF=1$.P为线段EF上一点.
(I)若P为EF的中点,求证:AP⊥DF;
(Ⅱ)是否存在点P,使直线AP与平面BDF所成的角为$\frac{π}{3}$?若存在,确定P点的位置;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列叙述中,正确的个数是(  )
①命题p:“?x∈R,x2-2≥0”的否定形式为¬p:“?x∈R,x2-2<0”;
②O是△ABC所在平面上一点,若$\overrightarrow{OA}$•$\overrightarrow{OB}$=$\overrightarrow{OB}$•$\overrightarrow{OC}$=$\overrightarrow{OC}$•$\overrightarrow{OA}$,则O是△ABC的垂心;
③“M>N”是“($\frac{2}{3}$)M>($\frac{2}{3}$)N”的充分不必要条件;
④命题“若x2-3x-4=0,则x=4”的逆否命题为“若x≠4,则x2-3x-4≠0”.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知x=27,y=64.化简并计算$\frac{5{x}^{-\frac{2}{3}}{y}^{\frac{1}{2}}}{(-\frac{1}{4}{x}^{-1}{y}^{\frac{1}{2}})(-\frac{5}{6}{x}^{\frac{1}{3}}{y}^{-\frac{1}{6}})}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.(1)对于函数f(x),g(x),已知f(6)=5,g(6)=4,f′(6)=3,g′(6)=1.如果h(x)=f(x)•g(x)-1,求h′(6)的值;
(2)直线y=$\frac{1}{2}$x+b能作为函数f(x)=sinx图象的切线吗?若能,求出切点坐标;若不能,简述理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知f(x)=$\left\{\begin{array}{l}{\frac{x-3a-1}{x-2},x<1}\\{-{x}^{2}-2(a-1)x-\frac{1}{6},x≥1}\end{array}\right.$是定义在(-∞,+∞)上是减函数,则a的取值范围是(  )
A.[$\frac{1}{6}$,$\frac{1}{3}$]B.[0,$\frac{1}{3}$]C.[0,$\frac{1}{3}$)D.[$\frac{1}{6}$,$\frac{1}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在长方体ABCD-A′B′C′D′中,P、R分别为BC、CC′上的动点,当点P,R满足什么条件时,PR∥平面AB′D′?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.直线Ax+3y+C=0与直线2x-3y+4=0的交点在y轴上,则C的值为-4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知集合M是具有下列性质的函数f(x)的全体:存在实数对(a,b),使得f(a+x)•f(a-x)=b对定义域内任意实数x都成立
(1)判断函数${f_1}(x)=x,{f_2}(x)={3^x}$是否属于集合M
(2)若函数$f(x)=\frac{1-tx}{1+x}$具有反函数f-1(x),是否存在相同的实数对(a,b),使得f(x)与f-1(x)同时属于集合M?若存在,求出相应的a,b,t;若不存在,说明理由.
(3)若定义域为R的函数f(x)属于集合M,且存在满足有序实数对(0,1)和(1,4);当x∈[0,1]时,f(x)的值域为[1,2],求当x∈[-2016,2016]时函数f(x)的值域.

查看答案和解析>>

同步练习册答案