精英家教网 > 高中数学 > 题目详情

【题目】等差数列{an}中,已知a3=5,且a1 , a2 , a5为递增的等比数列. (Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{bn}的通项公式 (k∈N*),求数列{bn}的前n项和Sn

【答案】解:(Ⅰ)设数列{an}的公差为d,由题意 ,a3=5. 即d2﹣2d=0,解之得d=2,或d=0(舍去),
所以an=a3+(n﹣3)d=2n﹣1,即an=2n﹣1,n∈N*为所求.
(Ⅱ)当n=2k,k∈N*时,
Sn=b1+b2+…+bn=b1+b3+…+b2k1+b2+b4+…+b2k=a1+a2+…+ak+(20+21+…+2k1
= =k2+2k﹣1=
当n=2k﹣1,k∈N*时,n+1=2k,Sn=Sn+1﹣bn+1= =
综上, (k∈N*).
【解析】(Ⅰ)设数列{an}的公差为d,由题意 ,a3=5,单人化简解出即可得出.(Ⅱ)对n分类讨论,分组求和即可得出.
【考点精析】根据题目的已知条件,利用数列的前n项和和数列的通项公式的相关知识可以得到问题的答案,需要掌握数列{an}的前n项和sn与通项an的关系;如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列{an},an=(2n+m)+(﹣1)n(3n﹣2)(m∈N* , m与n无关),若 a2i1≤k2﹣2k﹣1对一切m∈N*恒成立,则实数k的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a>0,b>0,c>0,函数f(x)=|x+a|﹣|x﹣b|+c的最大值为10.
(1)求a+b+c的值;
(2)求 (a﹣1)2+(b﹣2)2+(c﹣3)2的最小值,并求出此时a、b、c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知P是椭圆 上任意一点,过椭圆的右顶点A和上顶点B分别作x轴和y轴的垂线,两垂线交于点C,过P作AC,BC的平行线交BC于点M,交AC于点N,交AB于点D,E,矩形PMCN的面积是S1 , 三角形PDE的面积是S2 , 则 =( )
A.2
B.1
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 ,其左、右焦点分别为F1 , F2 , 离心率为 ,点R的坐标为 ,又点F2在线段RF1的中垂线上.
(1)求椭圆C的方程;
(2)设椭圆C的左、右顶点分别为A1 , A2 , 点P在直线 上(点P不在x轴上),直线PA1 , PA2与椭圆C分别交于不同的两点M,N,线段MN的中点为Q,若|MN|=λ|A1Q|,求λ.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,直线l的参数方程为 (t为参数,α∈[0,π)).以原点O为极点,以x轴正半轴为极轴,与直角坐标系xOy取相同的长度单位,建立极坐标系.设曲线C的极坐标方程为ρcos2θ=4sinθ. (Ⅰ)设M(x,y)为曲线C上任意一点,求x+y的取值范围;
(Ⅱ)若直线l与曲线C交于两点A,B,求|AB|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C:y2=2px(p>0)的焦点为F,以抛物线C上的点M(x0 , 2 )(x0 )为圆心的圆与线段MF相交于点A,且被直线x= 截得的弦长为 | |,若 =2,则| |=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x+1|,g(x)=2|x|+a.
(Ⅰ)当a=0时,解不等式f(x)≥g(x);
(Ⅱ)若存在x∈R,使得f(x)≥g(x)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果执行如图所示的程序框图,输入正整数N(N≥2)和实数a1 , a2 , …,an , 输出A,B,则(

A.A和B分别是a1 , a2 , …,an中最小的数和最大的数
B.A和B分别是a1 , a2 , …,an中最大的数和最小的数
C. 为a1 , a2 , …,an的算术平均数
D.A+B为a1 , a2 , …,an的和

查看答案和解析>>

同步练习册答案