精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(I)若处取得极值,求过点且与处的切线平行的直线方程;

(II)当函数有两个极值点,且时,总有成立,求实数的取值范围.

【答案】(Ⅰ)

【解析】

(Ⅰ)求导函数,利用极值点必为f′(x)=0的根,求出a的值,可得斜率,利用点斜式写出方程即可.

II)由题意得ux)=2x2﹣8x+a=0在(0,+∞)上有两个不等正根,可得a的范围,利用根与系数的关系将中的a,都用表示,构造函数,对m分类讨论,利用导数研究其单调性即可得出.

(Ⅰ)由已知,点,所以所求直线方程为

(Ⅱ)定义域为,令,由有两个极值点有两个不等的正根,所以

所以

不等式等价于

时,,所以上单调递增,又

所以时,时,

所以,不等式不成立

时,令

(i)方程所以上单调递减,又

时,,不等式成立

时,,不等式成立

所以时不等式成立

(ii)当时,对称轴开口向下且,令上单调递增,又 时不等式不成立,综上所述,则

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆,过坐标原点的直线两点,点在第一象限,轴,垂足为.连结并延长交于点.

(1)设到直线的距离为,求的取值范围;

(2)求面积的最大值及此时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列结论:

“直线l与平面平行”是“直线l在平面外”的充分不必要条件;

p,则

命题“设a,若,则”为真命题;

”是“函数上单调递增”的充要条件.

其中所有正确结论的序号为______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆,抛物线焦点均在x轴上,的中心和顶点均在原点O,从每条曲线上各取两个点,将其坐标记录于表中,则的左焦点到的准线之间的距离为( )

3

-2

4

0

-4

A.B.C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在上的函数单调递增,,若对任意,存在,使得成立,则称上的“追逐函数”.若,则下列四个命题:①上的“追逐函数”;②若上的“追逐函数”,则;③上的“追逐函数”;④当时,存在,使得上的“追逐函数”.其中正确命题的个数为( )

A. ①③B. ②④C. ①④D. ②③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆经过点,且离心率为.

(Ⅰ)求椭圆的方程;

(Ⅱ)过点任作一条直线与椭圆交于不同的两点.在轴上是否存在点,使得?若存在,求出点的坐标;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在六面体中,平面平面平面,且.

(1)求证:平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形为正方形,分别为的中点,以为折痕把折起,使点到达点的位置,且.

(1)证明:平面平面

(2)求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某超市2018年12个月的收入与支出数据的折线图如图所示:

根据该折线图可知,下列说法错误的是( )

A. 该超市2018年的12个月中的7月份的收益最高

B. 该超市2018年的12个月中的4月份的收益最低

C. 该超市2018年1-6月份的总收益低于2018年7-12月份的总收益

D. 该超市2018年7-12月份的总收益比2018年1-6月份的总收益增长了90万元

查看答案和解析>>

同步练习册答案