精英家教网 > 高中数学 > 题目详情
△ABC的三个内角A,B,C成等差数列,求证:
1
a+b
+
1
b+c
=
3
a+b+c
分析:△ABC的三个内角A,B,C成等差数列⇒B=60°,利用余弦定理可知b2=a2+c2-ac,利用分析法证明,要使原结论成立,只需证
c
a+b
+
a
b+c
=1,左端通分整理后将b2=a2+c2-ac,代入,再整理即可.
解答:证明:要证原式,只要证
a+b+c
a+b
+
a+b+c
b+c
=3,即
c
a+b
+
a
b+c
=1,
即只要证
bc+c2+a2+ab
ab+b2+ac+bc
=1,
而A+C=2B,B=60°,
∴b2=a2+c2-ac,
bc+c2+a2+ab
ab+b2+ac+bc
=
bc+c2+a2+ab
ab+a2+c2-ac+ac+bc
=
bc+c2+a2+ab
ab+a2+c2+bc
=1成立.
故原结论成立.
点评:本题考查分析法,着重考查推理证明,考查余弦定理与整体代换,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知a,b,c分别是△ABC的三个内角A,B,C所对的边,若a=1,b=
3
,A+C=2B
,则sinC=(  )
A、0B、2C、1D、-1

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC的三个内角A、B、C的对边分别是a,b,c,给出下列命题:
①若sinBcosC>-cosBsinC,则△ABC一定是钝角三角形;
②若sin2A+sin2B=sin2C,则△ABC一定是直角三角形;
③若bcosA=acosB,则△ABC为等腰三角形;
④在△ABC中,若A>B,则sinA>sinB;
其中正确命题的序号是
②③④
②③④
.(注:把你认为正确的命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的三个内角A,B,C的对边分别为a,b,c,且a,b,c成等比数列
(1)若sinC=2sinA,求cosB的值;
(2)求角B的最大值.并判断此时△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c分别为△ABC的三个内角A,B,C的对边,
m
=(-
3
,sinA),
n
=(cosA,1)
,且
m
n

(Ⅰ)求角A的大小;
(Ⅱ)若a=2,△ABC的面积为
3
,求b,c.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c分别是△ABC的三个内角A,B,C所对的边,若a=1,b=
3
,B=60°,则sinC=
1
1

查看答案和解析>>

同步练习册答案