精英家教网 > 高中数学 > 题目详情

【题目】为函数为定义域)图像上的一个动点,为坐标原点,为点与点两点间的距离.

1)若,求的最大值与最小值;

2)若,是否存在实数,使得的最小值不小于2?若存在,请求出的取值范围;若不存在,则说明理由.

【答案】1;(2)存在,

【解析】

(1)根据定义写出的表达式,对表达式进行配方法,最后可以求出的最大值与最小值;

(2)根据定义写出的表达式.

解法1:根据已知问题可以转化为对于恒成立,然后分类讨论,常变量分离,运用函数的单调性,求出的取值范围;

解法2:分类讨论,对函数的解析式进行配方,利用二次函数的单调性,求出的取值范围.

解:(1)当

2)解法1:,因为的最小值不小于2,即对于恒成立,当时,对于恒成立,所以,当时,取即可知,显然不成立,当时,对于恒成立,所以,综上知,

解法2:,当时,为增函数,,所以,当时,取不可能大于或等于2,当时,为增函数,综上知,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】近年,国家逐步推行全新的高考制度.新高考不再分文理科,某省采用模式,其中语文、数学、外语三科为必考科目,每门科目满分均为.另外考生还要依据想考取的高校及专业的要求,结合自己的兴趣爱好等因素,在思想政治、历史、地理、物理、化学、生物门科目中自选门参加考试(),每门科目满分均为.为了应对新高考,某高中从高一年级名学生(其中男生人,女生人)中,采用分层抽样的方法从中抽取名学生进行调查,其中,女生抽取.

1)求的值;

2)学校计划在高一上学期开设选修中的物理地理两个科目,为了了解学生对这两个科目的选课情况,对抽取到的名学生进行问卷调查(假定每名学生在物理地理这两个科目中必须选择一个科目且只能选择一个科目),下表是根据调查结果得到的一个不完整的列联表,请将下面的列联表补充完整,并判断是否有的把握认为选择科目与性别有关?说明你的理由;

选择物理

选择地理

总计

男生

女生

总计

3)在抽取到的名女生中,按(2)中的选课情况进行分层抽样,从中抽出名女生,再从这名女生中抽取人,设这人中选择物理的人数为,求的分布列及期望.附:

0.05

0.01

0.005

0.001

3.841

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是由)个整数按任意次序排列而成的数列,数列满足),按从大到小的顺序排列而成的数列,记.

1)证明:当为正偶数时,不存在满足)的数列.

2)写出),并用含的式子表示.

3)利用,证明:.(参考:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正方体中,分别是棱的中点,分别是线段上的点,则与平面平行的直线有(

A.0B.1C.2D.无数条

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,侧棱底面,底面是正三角形,

(1)求证:平面;

(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在上的函数,如果满足:对任意,存在常数,都有成立,则称上的有界函数,其中称为函数的上界.

1)设,判断上是否为有界函数,若是,请说明理由,并写出的所有上界的集合;若不是,也请说明理由;

2)若函数上是以为上界的有界函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 已知函数f(x)=|xa|+|x-2|.

(1)a=-3时,求不等式f(x)≥3的解集;

(2)f(x)≤|x-4|的解集包含[1,2],求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为正方形,底面为线段的中点,若为线段上的动点(不含.

1)平面与平面是否互相垂直?如果是,请证明;如果不是,请说明理由;

2)求二面角的余弦值的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了配合今年上海迪斯尼乐园工作,某单位设计了统计人数的数学模型,以表示第个时刻进入园区的人数;以表示第个时刻离开园区的人数.设定以15分钟为一个计算单位,上午915分作为第1个计算人数单位,即930分作为第2个计算单位,即;依次类推,把一天内从上午9点到晚上815分分成45个计算单位(最后结果四舍五入,精确到整数).

1)试计算当天14点至15点这1小时内进入园区的游客人数、离开园区的游客人数各为多少?

2)从1345分(即)开始,有游客离开园区,请你求出这之后的园区内游客总人数最多的时刻,并说明理由.

查看答案和解析>>

同步练习册答案