精英家教网 > 高中数学 > 题目详情
17.函数f(x)=ax3+x2+bx-$\frac{1}{3}$(a,b∈R),f′(x)为其导函数,且x=1时f(x)有极小值-2,若不等式f′(x)+4>n(xlnx-1)对任意正实数x恒成立,则正整数n的最大值5.(参考数据:ln2=0.693,ln3=1.098,ln5=1.609,ln7=1.946)

分析 f′(x)=3ax2+2x+b,由于x=1时f(x)有极小值-2,可得f′(1)=0,f(1)=-2,解得a,b.不等式f′(x)+4>n(xlnx-1),即:x2+2x+1>n(xlnx-1),(x>0).令x0lnx0=1.则x0∈(1,2),当x>x0时,xlnx-1>0,又x2+2x+1>0.因此只考虑x>x0时,n的最大值即可.$n<\frac{{x}^{2}+2x+1}{xlnx-1}$=g(x),
x>x0.利用导数研究其单调性极值与最值即可.

解答 解:f′(x)=3ax2+2x+b,
∵x=1时f(x)有极小值-2,
∴f′(1)=3a+2+b=0,f(1)=a+1+b-$\frac{1}{3}$=-2,
解得$a=\frac{1}{3}$,b=-3.
∴f′(x)=x2+2x-3=(x+3)(x-1),满足条件.
不等式f′(x)+4>n(xlnx-1),
即:x2+2x+1>n(xlnx-1),(x>0).
令x0lnx0=1.则x0∈(1,2),当x>x0时,xlnx-1>0,
又x2+2x+1>0.
因此只考虑x>x0时,n的最大值即可.
$n<\frac{{x}^{2}+2x+1}{xlnx-1}$=g(x),x>x0
g′(x)=$\frac{(2x+2)(xlnx-1)-({x}^{2}+2x+1)(lnx+1)}{(xlnx-1)^{2}}$=$\frac{(x+1)[(x-1)lnx-(x+3)]}{(xlnx-1)^{2}}$.
令h(x)=(x-1)lnx-(x+3),
h′(x)=lnx-$\frac{1}{x}$>0,
∴h(x)在(x0,+∞)上单调递增,
∴h(x)>h(x0)=(x0-1)lnx0-(x0+3)=-$\frac{1}{{x}_{0}}$-x0-2.
h(6)=5ln6-9=5×1.791-9<0.
h(7)=6ln7-10>0.
∴h(x)的零点x1∈(6,7).
g(6)=$\frac{49}{6ln6-1}$≈5.03,g(7)=$\frac{64}{7ln7-1}$≈5.07.
∴n<5.03.
∴正整数n的最大值为5.
故答案为:5.

点评 本题考查了利用导数研究其单调性极值与最值、恒成立问题的等价转化方法,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.$\frac{\sqrt{1-2sin40°cos40°}}{cos40°-\sqrt{1-co{s}^{2}140°}}$的值是1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.方程x${\;}^{\frac{1}{3}}$=($\frac{1}{2}$)x的解所在的区间是(  )
A.(0,$\frac{1}{3}$)B.($\frac{1}{3}$,$\frac{2}{3}$)C.($\frac{2}{3}$,1)D.(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知椭圆的焦点在x轴上,短轴长为$2\sqrt{3}$,离心率为$\frac{1}{2}$.
(1)求椭圆的标准方程;
(2)若直线l过该椭圆的左焦点,交椭圆于M、N两点,且$|{MN}|=\frac{7}{2}$,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知三个数12(16),25(7),33(4),将它们按由小到大的顺序排列为33(4)<12(16)<25(7)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC=1,点E是PC的中点,作EF⊥PB交PB于点F.
(1)求证:PA∥平面EDB;
(2)求证:PB⊥平面EFD;
(3)在线段AB上是否存在点M,使PM与平面PDB所成角的正弦值为$\frac{{\sqrt{38}}}{19}$?若存在,求出AM的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数f(x)=log3x+x-3零点所在大致区间是(  )
A.(1,2)B.(2,3)C.(3,4)D.(4,5)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.求证:$\frac{1}{n+1}$+$\frac{1}{n+2}$+$\frac{1}{n+3}$+…+$\frac{1}{3n+1}$<$\frac{9}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.“a=2”是直线“ax-2y=0与直线x-y+1=0平行的”(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要

查看答案和解析>>

同步练习册答案