精英家教网 > 高中数学 > 题目详情

【题目】已知复数z=(a2﹣7a+6)+(a2﹣5a﹣6)i(a∈R)
(1)若复数z为纯虚数,求实数a的值;
(2)若复数z在复平面内的对应点在第四象限,求实数a的取值范围.

【答案】
(1)解:若复数z=(a2﹣7a+6)+(a2﹣5a﹣6)i(a∈R)为纯虚数,

解得:a=1


(2)解:若复数z在复平面内的对应点在第四象限,

解①得:a<1或a>6,

解②得﹣1<a<6.

取交集得:﹣1<a<1.

∴实数a的取值范围是(﹣1,1)


【解析】(1)由实部等于0且虚部不为0联立不等式组求解;(2)由实部大于0且虚部小于0联立不等式组得答案.
【考点精析】利用复数的定义对题目进行判断即可得到答案,需要熟知形如的数叫做复数,分别叫它的实部和虚部.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知a>0,a≠1,设p:函数y=loga(x+1)在(0,+∞)上单调递减;q:曲线y=x2+(2a﹣3)x+1与x轴交于不同的两点.如果p且q为假命题,p或q为真命题,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 =(1,2), =(﹣3,2), 当k=时,(1)k + ﹣3 垂直;
当k=时,(2)k + ﹣3 平行.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校从参加考试的学生中抽出60名学生,将其成绩(均为整数)分成六组[40,50),[50,60)…[90,100]后,画出如下部分频率分布直方图.观察图形的信息,回答下列问题: (Ⅰ) 求成绩落在[70,80)上的频率,并补全这个频率分布直方图;
(Ⅱ) 估计这次考试的及格率(60分及以上为及格)和平均分;
(Ⅲ) 设学生甲、乙的成绩属于区间[40,50),现从成绩属于该区间的学生中任选两人,求甲、乙中至少有一人被选的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,某抛物线的顶点为原点,焦点为圆心,经过点的直线交圆 两点,交此抛物线于 两点,其中 在第一象限, 在第二象限.

(1)求该抛物线的方程;

(2)是否存在直线,使的等差中项?若存在,求直线的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)= (其中p2+q2≠0),且存在公差不为0的无穷等差数列{an},使得函数在其定义域内还可以表示为f(x)=1+a1x+a2x+a2x2+…+anxn+…
(1)求a1 , a2的值(用p,q表示);
(2)求{an}的通项公式;
(3)当n∈N*且n≥2时,比较(an1an与(an 的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知z是复数,z+2i, 均为实数(i为虚数单位),且复数(z+ai)2在复平面上对应的点在第一象限,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,某小区为美化环境,准备在小区内草坪的一侧修建一条直路,另一侧修建一条休闲大道,它的前一段是函数 的一部分,后一段是函数 ),时的图象,图象的最高点为 ,垂足为.

(1)求函数的解析式;

(2)若在草坪内修建如图所示的儿童游乐园PMFE,问点落在曲线上何处时,儿童乐园的面积最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某校5个学生的数学和物理成绩如表

学生的编号i

1

2

3

4

5

数学xi

80

75

70

65

60

物理yi

70

66

68

64

62

(Ⅰ)假设在对这5名学生成绩进行统计时,把这5名学生的物理成绩搞乱了,数学成绩没出现问题,问:恰有2名学生的物理成绩是自己的实际分数的概率是多少?
(Ⅱ)通过大量事实证明发现,一个学生的数学成绩和物理成绩具有很强的线性相关关系的,在上述表格是正确的前提下,用x表示数学成绩,用y表示物理成绩,求y与x的回归方程;
参考公式: =

查看答案和解析>>

同步练习册答案