精英家教网 > 高中数学 > 题目详情

【题目】如图所示,四棱锥中,四边形是直角梯形, 底面 的中点, 点在上,且.

(1)证明: 平面

(2)求直线与平面所成角的正弦值.

【答案】(I)见解析;(II)

【解析】试题分析:(1)要证MN∥平面PAD,只需在面PAD内找到一条直线和MN平行即可,而根据条件,易作辅助线过MMECDPDE,连接AE,下证MNAE;

(2)求直线MN与平面PCB所成的角,关键找直线MN在平面PCB内的射影,而根据条件,易作辅助线过N点作NQAPBP于点Q,NFCBCB于点F,连接QF,过N点作NHQFQFH,连接MH,下证NH⊥平面PBC,∴∠NMH为直线MN与平面PCB所成的角.解MNH即可.

试题解析:

(1)过点点,连结

, 又 为平行四边形, 平面

(2)过点作于点于点,

连结,过点作,连结

易知,

, 为直线与平面所成角,

通过计算可得

直线与平面所成角为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图已知是边长为的正方形的中心,点分别是的中点,沿对角线把正方形折成二面角.

(1)证明:四面体的外接球的体积为定值,并求出定值;

(2)若二面角为直二面角,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足: ,其中.

(1)求数列的通项公式;

(2)记数列的前项和为,问是否存在正整数,使得成立?若存在,求的最小值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某游乐场推出了一项趣味活动,参加活动者需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.设两次记录的数分别为,奖励规则如下:①若,则奖励玩具一个;②若,则奖励水杯一个;③其余情况奖励饮料一瓶.假设转盘质地均匀,四个区域划分均匀,小亮准备参加此项活动.

(1)求小亮获得玩具的概率;

(2)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国古代数学名著《续古摘奇算法》(杨辉)一书中有关于三阶幻方的问题:将1,2,3,4,5,6,7,8,9分别填入的方格中,使得每一行,每一列及对角线上的三个数的和都相等,我们规定:只要两个幻方的对应位置(如每行第一列的方格)中的数字不全相同,就称为不同的幻方,那么所有不同的三阶幻方的个数是( )

8

3

4

1

5

9

6

7

2

A. 9 B. 8 C. 6 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市为了解各校《国学》课程的教学效果,组织全市各学校高二年级全体学生参加了国学知识水平测试,测试成绩从高到低依次分为ABCD四个等级.随机调阅了甲、乙两所学校各60名学生的成绩,得到如下的分布图:

)试确定图中的值;

)若将等级ABCD依次按照分、80分、60分、50分转换成分数,试分别估计两校学生国学成绩的均值;

)从两校获得A等级的同学中按比例抽取5人参加集训,集训后由于成绩相当,决定从中随机选2人代表本市参加省级比赛,求两人来自同一学校的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂为了对新研发的一种产品进行合理定价,将该定价按事先拟定的价格进行试销,得到如下数据:

单价(元)

8

8.2

8.4

8.6

8.8

9

销量(元)

90

84

83

80

75

68

(1)求回归直线方程

(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?

附: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,过左焦点且垂直于长轴的弦长为

(1)求椭圆的标准方程;

(2)点为椭圆的长轴上的一个动点,过点且斜率为的直线交椭圆两点,证明:为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业实行裁员增效,已知现有员工人,每人每年可创纯收益(已扣工资等)1万元,据评估,在生产条件不变的情况下,每裁员一人,则留岗员工每人每年可多创收0.01万元,但每年需付给下岗工人每位0.4万元的生活费,并且企业正常运转所需人数不得少于现有员工的,设该企业裁员人后,年纯收益为万元.

(1)写出关于的函数关系式,并指出的取值范围;

(2)当时,该企业应裁员多少人,才能获得最大的经济效益(注:在保证能取得最大的经济效益的情况下,能少裁员,应尽量少裁员)?

查看答案和解析>>

同步练习册答案