【题目】已知函数,.
(Ⅰ)若恒成立,求的取值范围;
(Ⅱ)设,,(为自然对数的底数).是否存在常数,使恒成立,若存在,求出的取值范围;若不存在,请说明理由.
【答案】(Ⅰ);(Ⅱ).
【解析】试题分析: (Ⅰ)利用函数的导数求出函数的最小值,根据最小值大于 就能 求出 的取值范围;(Ⅱ)此恒成立问题转化为 小于等于 的最小值,在求函数的最小值时,运用了二次求导.
试题解析:(Ⅰ)由已知得,的定义域为,且
当时,恒成立,
∴,由得,
得的取值范围为.
(Ⅱ)由已知得,,其定义域为.
,
∵,∴在上单调递减,在上单调递增,
∴,
令,则,
再令,则
∵,∴.
∴在上单调递减,∴
∴,且,
即存在,使在上单调递增,在上单调递减,
则的最小值就是和中较小的那个,
又,∴,
∴恒成立,即
∴存在实数使恒成立,取值范围为.
点睛:本题考查利用导数研究函数的单调性与最值,对数函数的性质及分类讨论思想,利用导数研究函数的单调性时要注意先求函数的定义域,若所求的导数含有参数,在进行讨论时要做到分类标准统一,对参数的讨论要不重不漏.
科目:高中数学 来源: 题型:
【题目】【2016高考四川文科】已知数列{ }的首项为1, 为数列的前n项和, ,其中q>0, .
(Ⅰ)若 成等差数列,求的通项公式;
(Ⅱ)设双曲线 的离心率为 ,且 ,求.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】现在颈椎病患者越来越多,甚至大学生也出现了颈椎病,年轻人患颈椎病多与工作、生活方式有关,某调查机构为了了解大学生患有颈椎病是否与长期过度使用电子产品有关,在遂宁市中心医院随机的对入院的50名大学生进行了问卷调查,得到了如下的4×4列联表:
未过度使用 | 过度使用 | 合计 | |
未患颈椎病 | 15 | 5 | 20 |
患颈椎病 | 10 | 20 | 30 |
合计 | 25 | 25 | 50 |
(1)是否有99.5%的把握认为大学生患颈锥病与长期过度使用电子产品有关?
(2)已知在患有颈锥病的10名未过度使用电子产品的大学生中,有3名大学生又患有肠胃炎,现在从上述的10名大学生中,抽取3名大学生进行其他方面的排查,记选出患肠胃炎的学生人数为,求的分布列及数学期望.
参考数据与公式:
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设f(x)是(-∞,+∞)上的奇函数,且f(x+2)=-f(x),当0≤x≤1时,f(x)=x,则f(7.5)等于( )
A. 0.5 B. -0.5
C. 1.5 D. -1.5
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某研究小组在电脑上进行人工降雨模拟实验,准备用、、三种人工降雨方式分别对甲、乙、丙三地实施人工降雨,其试验数据统计如表:
方式 | 实施地点 | 大雨 | 中雨 | 小雨 | 模拟实验总次数 |
甲 | 4次 | 6次 | 2次 | 12次 | |
乙 | 3次 | 6次 | 3次 | 12次 | |
丙 | 2次 | 2次 | 8次 | 12次 |
假定对甲、乙、丙三地实施的人工降雨彼此互不影响,请你根据人工降雨模拟实验的统计数据:
(Ⅰ)求甲、乙、丙三地都恰为中雨的概率;
(Ⅱ)考虑到旱情和水土流失,如果甲地恰需中雨即达到理想状态,乙地必须是大雨才达到理想状态,丙地只能是小雨或中雨即达到理想状态,记“甲、乙、丙三地中达到理想状态的个数”为随机变量,求随机变量的分布列和数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com