精英家教网 > 高中数学 > 题目详情
13.化简$\sqrt{(a-b)^{2}}+\root{5}{(a-b)^{5}}$的结果是(  )
A.0B.2(b-a)C.0或2(a-b)D.b-a

分析 原式=|a-b|+a-b,对a,b大小关系分类讨论即可得出.

解答 解:原式=|a-b|+a-b=$\left\{\begin{array}{l}{2(a-b),a≥b}\\{0,a<b}\end{array}\right.$.
故选:C.

点评 本题成立根式的运算性质、分类讨论方法,考查了推理能力与技能数列,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知f(x-1)=x2+6x,则f(x)的表达式是(  )
A.x2+4x-5B.x2+8x+7C.x2+2x-3D.x2+6x-10

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知f(x)在R上是偶函数,且满足f(4-x)=f(x),若x∈(0,2)时,f(x)=2x2,则f(7)=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知α是第三象限角,$cosα=-\frac{4}{5}$,则$\frac{{1+tan\frac{α}{2}}}{{1-tan\frac{α}{2}}}$的值为$-\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在四边形ABCD中,AD∥BC,BC=CD,∠ADC=90°,BC=DC=2AD,E为四边形ABCD内一点,F为四边形ABCD外一点,且∠BEC=∠DFC=90°,BE∥CF交CD的中点于N.
(1)已知EC=1,求线段DF的长;
(2)连接BF交EC于G,求证:∠A+$\frac{1}{3}$∠ABF=135°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设关于x的不等式$\frac{x+3}{k+1}$>1+$\frac{2x-3}{(k+1)^{2}}$(k∈R且k≠-1)
(1)解此不等式;
(2)若此不等式的解集为(-∞,$\frac{1}{2}$),求k的值;
(3)若x=-2是不等式的解,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.点P(x0,y0)在直线l:f(x,y)=0外,则l1:f(x,y)+f(x0,y0)=0与l2:f(-y,x)+f(x0,y0)=0的位置关系是(  )
A.平行B.垂直C.平行或重合D.相交且不垂直

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知数列{an}的前n项和为Sn,Sn=$\frac{1}{3}$(an-1)(n∈N*).
(1)求a1,a2的值;
(2)证明数列{an}是等比数列,并求Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.函数y=$\left\{\begin{array}{l}{{3}^{x-1}-2\\;x≤1}\\{{3}^{1-x}-2\\;x>1}\end{array}\right.$的值域是(-2,-1].

查看答案和解析>>

同步练习册答案