精英家教网 > 高中数学 > 题目详情
13.已知a∈R,函数f(x)=$\sqrt{2x+4}$+3a和g(x)=$\sqrt{x+3}$+2a2的图象有交点,则a的取值范围是(  )
A.(-∞,$\frac{1}{2}$]∪[1,+∞)B.(-$\frac{1}{2}$,0]∪[1,+∞)C.[$\frac{1}{2}$,+∞)D.(-∞,2]

分析 由题意可得方程 $\sqrt{2x+4}$-$\sqrt{x+3}$=2a2-3a 有解,故 x≥-2.令y=$\sqrt{2x+4}$-$\sqrt{x+3}$,利用用导数求出y的最小值为-1,可得 2a2-3a≥-1,由此求得a的范围.

解答 解:由题意可得方程 $\sqrt{2x+4}$-$\sqrt{x+3}$=2a2-3a 有解,∴x≥-2.
令y=$\sqrt{2x+4}$-$\sqrt{x+3}$,则y′=$\frac{1}{\sqrt{2x+4}}$-$\frac{1}{2\sqrt{x+3}}$ 在(-2,+∞)上大于零,故函数y在[-2,+∞)上为增函数,
故当x=-2时,函数y取得最小值为-1,
∴2a2-3a≥-1,求得a≥1 或a≤$\frac{1}{2}$,
故选:A.

点评 本题主要考查函数的图象,利用导数研究函数的单调性,根据单调性求函数的最值,一元二次不等式的解法,体现了转化的数学思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.已知双曲线mx2+y2=1的虚轴长是实轴长的2倍,则此双曲线的渐近线方程是y=±$\frac{x}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知cos($\frac{13}{6}$π+x)=$\frac{\sqrt{3}}{3}$,求cos($\frac{23}{6}$π-x)+sin($\frac{2}{3}$π+x).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.阅读下面的两个程序:
(1)若当输入一个正整数n时,这两个程序输出的结果记为an,bn,写出{an}和{bn}的通项公式;
(2)设cn=an•bn,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设函数f(x)=$\sqrt{(ax-5)(a-{x}^{2})}$的定义域为A,集合B={x||x-a|>2},已知命题p:3∈A,命题q:10∈B,若p真且q假,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.直线l过点P(-1,1)且与直线l′:2x-y+3=0及x轴围成底边在x轴上的等腰三角形,则直线1的方程为2x+y+1=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数y=4sinx,x∈[-π,π]的单调性是(  )
A.在[-π,0]上是增函数,在[0,π]上是减函数
B.在[-$\frac{π}{2}$,$\frac{π}{2}$]上是增函数,在[-π,-$\frac{π}{2}$]和[$\frac{π}{2}$,π]上都是减函数
C.在[0,π]上是增函数,在[-π,0]上是减函数
D.在[$\frac{π}{2}$,π]和[-π,-$\frac{π}{2}$]上是增函数,在[-$\frac{π}{2}$,$\frac{π}{2}$]上是减函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.(1)求和:Sn=$\sqrt{11-2}$+$\sqrt{1111-22}$+…+$\sqrt{\underset{\underbrace{11…11}}{2n个}-\underset{\underbrace{22…2}}{n个}}$;
(2)求和:Sn=1-3+5-7+9-11+…+(-1)n-1(2n-1);
(3)求和:12+32+52+…+(2n+1)2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设集合A={x|y=$\frac{1}{\sqrt{x-1}}$},B={y|y=-x2+2x-2,x∈R}.
(1)求集合A,B;
(2)若集合C={x|2x+a<0},且满足B∪C=C,求实数a的取值范围.

查看答案和解析>>

同步练习册答案