【题目】如图,已知椭圆的离心率为,以该椭圆上的点和椭圆的左、右焦点为顶点的三角形的周长为,一双曲线的顶点是该椭圆的焦点,且它的实轴长等于虚轴长,设为该双曲线上异于顶点的任一点,直线和与椭圆的交点分别为和,其中在轴的同一侧.
(1)求椭圆和双曲线的标准方程;
(2)是否存在题设中的点,使得?若存在, 求出点的坐标;若不存在,请说明理由.
【答案】(1)(2)
【解析】试题分析:(1)由椭圆定义可得 ,再结合离心率为 ,解出,,由双曲线的顶点是该椭圆的焦点,得,再根据实轴长等于虚轴长得(2)设P点坐标,利用点斜式表示直线AB,CD方程,利用韦达定理及弦长公式求;根据椭圆性质确定直线AB,CD斜率关系,根据焦点三角形求向量夹角,综合条件可解得P点坐标
试题解析:解:(1)由题意知,椭圆离心率为 ,得,又 ,所以可解得, ,所以,所以椭圆的标准方程为;所以椭圆的焦点坐标为(,0),因为双曲线为等轴双曲线,且顶点是该椭圆的焦点,所以该双曲线的标准方程为
(2)设,则,在双曲线上,,设 方程为,
的方程为,设,则
,
,
同理,, 由题知,
,.
,
,.
科目:高中数学 来源: 题型:
【题目】(理)已知在平面直角坐标系中,直线的参数方程是(为参数),以原点为极点,轴正半轴为极轴建立极坐标,曲线的极坐标方程.
(1)判断直线与曲线的位置关系;
(2)设为曲线上任意一点,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,底面为边长为2的菱形,,,面面,点为棱的中点.
(1)在棱上是否存在一点,使得面,并说明理由;
(2)当二面角的余弦值为时,求直线与平面所成的角.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义在R上的函数f(x)=2x-.
(1)若f(x)=,求x的值;
(2)若2tf(2t)+mf(t)≥0对于t∈[1,2]恒成立,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】通过随机询问110名性别不同的大学生是否爱好某项运动,得到如表的列联表:
男 | 女 | 总计 | |
爱好 | 40 | 20 | 60 |
不爱好 | 20 | 30 | 50 |
总计 | 60 | 50 | 110 |
0.050 | 0.010 | 0.001 | |
k | 3.841 | 6.635 | 10.828 |
算得,.见附表:参照附表,得到的正确结论是( )
A. 在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”
B. 在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”
C. 有99%以上的把握认为“爱好该项运动与性别有关”
D. 有99%以上的把握认为“爱好该项运动与性别无关”
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】中国高铁的快速发展给群众出行带来巨大便利,极大促进了区域经济社会发展.已知某条高铁线路通车后,发车时间间隔(单位:分钟)满足,经测算,高铁的载客量与发车时间间隔相关:当时高铁为满载状态,载客量为人;当时,载客量会在满载基础上减少,减少的人数与成正比,且发车时间间隔为分钟时的载客量为人.记发车间隔为分钟时,高铁载客量为.
求的表达式;
若该线路发车时间间隔为分钟时的净收益(元),当发车时间间隔为多少时,单位时间的净收益最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某同学将收集到的六组数据制作成散点图如图所示,并得到其回归直线的方程为,计算其相关系数为,相关指数为.经过分析确定点为“离群点”,把它去掉后,再利用剩下的5组数据计算得到回归直线的方程为,相关系数为,相关指数为.以下结论中,不正确的是
A. B.
C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com