精英家教网 > 高中数学 > 题目详情
15.在△ABC中,内角A,B,C所对的边分别是a,b,c,已知$a=4,c=2\sqrt{2}$,$cosA=-\frac{{\sqrt{2}}}{4}$.
(1)求sinC和b的值;
(2)求$sin(2A-\frac{π}{3})$的值.

分析 (1)由$cosA=-\frac{{\sqrt{2}}}{4}$,A∈(0,π).可得sinA=$\frac{\sqrt{14}}{4}$.由正弦定理可得:sinC=$\frac{csinA}{a}$.由a<c,可得C为锐角,cosC.可得cosB=-cos(A+C)=-cosAcosC+sinAsinC.
sinB=$\sqrt{1-co{s}^{2}B}$.由正弦定理可得:b=$\frac{asinB}{sinA}$.
(2)由$cosA=-\frac{{\sqrt{2}}}{4}$,A∈$(\frac{π}{2},\frac{3π}{4})$,可得2A∈$(π,\frac{3π}{2})$.可得sin2A=2sinAcosA,cos2A=-$\sqrt{1-si{n}^{2}2A}$.$sin(2A-\frac{π}{3})$=$sin2Acos\frac{π}{3}$-$cos2Asin\frac{π}{3}$.

解答 解:(1)∵$cosA=-\frac{{\sqrt{2}}}{4}$,A∈(0,π).
∴sinA=$\frac{\sqrt{14}}{4}$.
由正弦定理可得:sinC=$\frac{csinA}{a}$=$\frac{2\sqrt{2}×\frac{\sqrt{14}}{4}}{4}$=$\frac{\sqrt{7}}{4}$.
∵a<c,∴C为锐角.
∴cosC=$\frac{3}{4}$.
∴cosB=-cos(A+C)=-cosAcosC+sinAsinC=$-(-\frac{\sqrt{2}}{4})$×$\frac{3}{4}$+$\frac{\sqrt{14}}{4}$×$\frac{\sqrt{7}}{4}$=$\frac{5\sqrt{2}}{8}$.
∴sinB=$\sqrt{1-co{s}^{2}B}$=$\frac{\sqrt{14}}{8}$.
由正弦定理可得:b=$\frac{asinB}{sinA}$=$\frac{4×\frac{\sqrt{14}}{8}}{\frac{\sqrt{14}}{4}}$=2.
(2)∵$cosA=-\frac{{\sqrt{2}}}{4}$,A∈(0,π).
∴A∈$(\frac{π}{2},\frac{3π}{4})$,
∴2A∈$(π,\frac{3π}{2})$.
sin2A=2sinAcosA=$2×\frac{\sqrt{14}}{4}$×$(-\frac{\sqrt{2}}{4})$=-$\frac{\sqrt{7}}{4}$.
cos2A=-$\sqrt{1-si{n}^{2}2A}$=-$\frac{3}{4}$.
$sin(2A-\frac{π}{3})$=$sin2Acos\frac{π}{3}$-$cos2Asin\frac{π}{3}$=$-\frac{\sqrt{7}}{4}$×$\frac{1}{2}$-$(-\frac{3}{4})$×$\frac{\sqrt{3}}{2}$=$\frac{{3\sqrt{3}-\sqrt{7}}}{8}$.

点评 本题考查了正弦定理、倍角公式、和差公式、同角三角函数基本关系式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知直线l的极坐标方程为$ρsin(θ-\frac{π}{3})=6$,圆C的参数方程为$\left\{\begin{array}{l}x=10cosθ\\ y=10sinθ\end{array}\right.(θ$为参数).
(1)请分别把直线l和圆C的方程化为直角坐标方程;
(2)求直线l被圆截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=asin(2ωx+$\frac{π}{6}$)+$\frac{a}{2}$+b(x∈R,a>0,ω>0)的最小正周期为π,函数f(x)的最大值为$\frac{7}{4}$,最小值为$\frac{3}{4}$.
(1)求ω、a、b的值;
(2)指出f(x)的单调递增区间;
(3)若函数f(x)满足方程f(x)=a(0.75<a<1.5),求在[0,2π]内的所有实数根之和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知各项不为零的数列{an}的前n项和为Sn,且满足Sn=a1(an-1);数列{bn}满足anbn=log2an,数列{bn}的前n项和Tn
(Ⅰ)求an,Tn
(Ⅱ)若?n∈N+,不等式t2+2λt+3<Tn成立,求使关于t的不等式有解的充要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知圆C在x轴上的截距为-1和3,在y轴上的一个截距为1.
(1)求圆C的标准方程;
(2)求过原点且被圆C截得的弦长最短时的直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.某种游戏中,一只“电子狗”从棱长为1的正方体ABCD-A1B1C1D1的顶点A出发,沿棱向前爬行,每爬完一条棱称为“爬完一段”,它的爬行的路线是AB→BB1→B1C1…,它们都遵循如下规则:所爬行的第i+2段与第i段所在直线必须是异面直线(其中i是正整数);则该“电子狗”爬完2014段后与起始点A的距离是$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设集合A={5,a+1},B={a,b},若A=B,则a+b=11.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知一个等边三角形的三边长为6,一只蚂蚁在其内部爬行,若不考虑蚂蚁的大小,求某时刻该蚂蚁距离三角形的三个顶点的距离均超过2的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如果一条直线与一个平面平行,则这条直线与这个平面内直线的位置关系为(  )
A.平行或相交B.平行或异面C.相交或异面D.都有可能

查看答案和解析>>

同步练习册答案