精英家教网 > 高中数学 > 题目详情
6.已知弧度数为2的圆心角所对的弦长是4,则这个圆心角所对的弧长是(  )
A.4B.$\frac{4}{sin1}$C.4sin1D.sin2

分析 先确定圆的半径,再利用弧长公式,即可得到结论

解答 解:设半径为R,所以sin1=$\frac{2}{R}$.所以R=$\frac{2}{sin1}$,所以弧长l=2×R=2×$\frac{2}{sin1}$=$\frac{4}{sin1}$.
答案:B.

点评 本题考查弧长公式,考查学生的计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=e2x+sin3x,则f′(0)=8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=(x+6)(x-7),g(x)=ax2-(3a+1)x+3,其中a<0,若存在6个整数x0,有f(x0)<0与g(x0)<0同时成立,则a的值可能为(  )
A.-1B.-$\frac{1}{2}$C.-$\frac{1}{3}$D.-4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知?ABCD的面积为2,P是边AD上任意一点,则|PB|2+|PC|2的最小值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知f(x)是定义域为R的奇函数,若?x∈R,f′(x)>-2,则不等式f(x-1)<x2(3-2lnx)+3(1-2x)的解集是(  )
A.(0,1)B.(1,+∞)C.($\frac{1}{2}$,+∞)D.($\frac{1}{2}$,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知$\overrightarrow a=(\sqrt{3}sinx-cosx,1)$,$\overrightarrow b=(cosx,m)$,函数f(x)=$\overrightarrow a•\overrightarrow b$(m∈R)的图象过点M($\frac{π}{12}$,0).
(Ⅰ)求m的值以及函数f(x)的最小正周期和单调增区间;
(Ⅱ)在△ABC中,角A,B,C的对边分别是a,b,c,若ccosB+bcosC=2acosB,求f(A)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.记min{a,b,c}为实数a,b,c中最小的一个,已知函数f(x)=-x+1图象上的点(x1,x2+x3)满足:对一切实数t,不等式-t2-${2}^{{x}_{1}^{2}}$t-2${\;}^{2+{x}_{1}^{2}-{x}_{2}^{2}-{x}_{3}^{2}}$+4${\;}^{2-{x}_{2}^{2}-{x}_{3}^{2}}$≤0均成立,如果min{-x1,-x2,-x3}=-x1,那么x1的取值范围是$[\frac{1}{3},+∞)$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若x,y的满足$\left\{\begin{array}{l}x-y+3≥0\\ x+y-3≥0\\ x≥1.\end{array}\right.$,则z=2x-y的最小值为-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设全集为R,函数$f(x)=\sqrt{4-{x^2}}$的定义域为M,则∁RM为(  )
A.[-2,2]B.(-2,2)C.(-∞,-2]∪[2,+∞)D.(-∞,-2)∪(2,+∞)

查看答案和解析>>

同步练习册答案