【题目】如图,在正三棱柱中,点是棱的中点,.
(1)求证:平面;
(2)求二面角的平面角的正弦值.
【答案】(1)证明见解析;(2).
【解析】
试题分析:(1)连结交于点,连结,利用四边形是平行四边形,进而证明出∥,即可利用线面平行的判定定理,证得平面;(2)分别以所在的直线为轴,轴,轴建立空间直角坐标系,分别求解平面和平面的一个法向量,利用向量的夹角公式,即可求解二面角的平面角的余弦值,进而求解其正弦值.
试题解析:(Ⅰ)证明:连结交于点,连结.
在正三棱柱中,四边形是平行四边形,∴.
∵,∴∥.
∵平面,平面, ∴∥平面.
(2)过点作交于,过点作交于.因为平面平面,所以平面.分别以所在的直线为轴,轴,轴建立空间直角坐标系,如图所示.因为,是等边三角形,所以为的中点.则,,,,,,B(,0,0)
(Ⅰ)设平面的法向量为,则
∵,,∴
取,得平面的一个法向量为
=(1,-,0)·=0∴∥平面.
(Ⅱ)可求平面的一个法向量为.
设二面角的大小为,则.
∵,
科目:高中数学 来源: 题型:
【题目】如图,在直三棱柱ABC—A1B1C1中,E、F分别是A1B、A1C的中点,点D在B1C1上,A1D⊥B1C.
求证:(1)EF∥平面ABC;
(2)平面A1FD⊥平面BB1C1C.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一个四棱锥的三视图如图所示.
(1)求证:PA⊥BD;
(2)在线段PD上是否存在一点Q,使二面角Q-AC-D的平面角为30°?若存在,求的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知圆的极坐标方程为,直线的参数方程为(为参数).若直线与圆相交于不同的两点,.
(Ⅰ)写出圆的直角坐标方程,并求圆心的坐标与半径;
(Ⅱ)若弦长,求直线的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法正确的是( )
A. 由归纳推理得到的结论一定正确
B. 由类比推理得到的结论一定正确
C. 由合情推理得到的结论一定正确
D. 演绎推理在前提和推理形式都正确的前提下,得到的结论一定正确
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列试验中,是古典概型的为( )
A.种下一粒种子,观察它是否发芽
B.从规格直径为250 mm±0.6 mm的一批合格产品中任意抽一件,测量其直径d
C.抛一枚硬币,观察其向上的面
D.某人射击中靶或不中靶
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若事件A和B是互斥事件,且P(A)=0.1,则P(B)的取值范围是( )
A. [0,0.9] B. [0.1,0.9] C. (0,0.9] D. [0,1]
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com