精英家教网 > 高中数学 > 题目详情

【题目】某单位安排7位员工对一周的7个夜晚值班,每位员工值一个夜班且不重复值班,其中员工甲必须安排在星期一或星期二值班,员工乙不能安排在星期二值班,员工丙必须安排在星期五值班,则这个单位安排夜晚值班的方案共有(

A. 96B. 144C. 200D. 216

【答案】D

【解析】

可分为两类:甲安排在星期一,丙排在星期五和甲安排在星期二,丙排在星期五,再由分类计数原理,即可求解.

由题意,先安排丙和甲,再安排乙,其余的人任意排.

若甲安排在星期一,丙排在星期五,则乙有4种安排方法,其余的4人任意排,共有4=96种.

若甲安排在星期二,丙排在星期五,则其余的5人任意排,共有=120种.

由分类计数原理,可得这个单位安排夜晚值班的方案共有96+120=216种,

故选:D

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,的中点.

(1)证明:平面

(2)若点在棱上,且,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图在三棱锥平面平面为等边三角形OM分别为的中点

求证:平面

线段上一点满足平面平面试说明点的位置

求三棱锥的体积

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数的最大值为3,其图象相邻两条对称轴之间的距离为.

(Ⅰ)求函数的解析式和当的单调减区间;

(Ⅱ)的图象向右平行移动个长度单位,再向下平移1个长度单位,得到的图象,用“五点法”作出内的大致图象.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】朱世杰是历史上最伟大的数学家之一,他所著的《四元玉鉴》卷中“如像招数”五问中有如下问题:“今有官司差夫一千八百六十四人筑堤,只云初日差六十四人,次日转多七人,每人日支米三升,共支米四百三石九斗二升,问筑堤几日”。其大意为“官府陆续派遣1864人前往修筑堤坝,第一天派出64人,从第二天开始每天派出的人数比前一天多7人,修筑堤坝的每人每天分发大米3升,共发出大米40392升,问修筑堤坝多少天”,在该问题中前5天共分发了多少大米?

A. 1170升 B. 1380升 C. 3090升 D. 3300升

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心在原点,焦点在轴上,短轴长和焦距都等于2, 是椭圆上的一点,且在第一象限内,过且斜率等于的直线与椭圆交于另一点,点关于原点的对称点为.

)证明:直线的斜率为定值;

)求面积的最大值,并求此时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列命题:

(1)终边在y轴上的角的集合是

(2)把函数f(x)=2sin2x的图象沿x轴方向向左平移个单位后,得到的函数解析式可以表示成f(x)=2sin

(3)函数f(x)=sinx的值域是[-1,1];

(4)已知函数f(x)=2cosx,若存在实数x1x2,使得对任意的实数x都有成立,则的最小值为2π.

其中正确的命题的序号为________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,且短轴长为2.

1)求椭圆的标准方程;

2)已知分别为椭圆的左右顶点, ,,且,直线分别与椭圆交于两点,

(i)用表示点的纵坐标;

(ii)若面积是面积的5倍,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2017年5月27日当今世界围棋排名第一的柯洁在与的人机大战中中盘弃子认输,至此柯洁与的三场比赛全部结束,柯洁三战全负,这次人机大战再次引发全民对围棋的关注,某学校社团为调查学生学习围棋的情况,随机抽取了100名学生进行调查,根据调查结果绘制的学生日均学习围棋时间的频率分布直方图(如图所示),将日均学习围棋时间不低于40分钟的学生称为“围棋迷”.

(1)请根据已知条件完成下面列联表,并据此资料你是否有95%的把握认为“围棋迷”与性别有关?

非围棋迷

围棋迷

合计

10

55

合计

(2)为了进一步了解“围棋迷”的围棋水平,从“围棋迷”中按性别分层抽样抽取5名学生组队参加校际交流赛,首轮该校需派两名学生出赛,若从5名学生中随机抽取2人出赛,求2人恰好一男一女的概率.

查看答案和解析>>

同步练习册答案