精英家教网 > 高中数学 > 题目详情
如图,A点的初始位置位于数轴上的原点,现对A点做如下移动:第1次从原点向右移动1个单位长度至B点,第2次从B点向左移动3个单位长度至C点,第3次从C点向右移动6个单位长度至D点,第4次从D点向左移动9个单位长度至E点,…,依此类推,这样移动解答:
①移动5次后、6次后该点对应的数;
②分别求出移动(2n-1)次和2n次后该点到原点的距离(n为正整数)
③多少次后该点到原点的距离为2015?
考点:进行简单的合情推理,归纳推理
专题:推理和证明
分析:①根据已知中的移动方式,逐步分析可得移动5次后、6次后该点对应的数;
②结合①中规律,可得移动奇数次和偶数次该点到原点的距离均成等差数列,进而可得答案;
③根据②中结论,分类求出满足条件的n值,可得答案.
解答: 解:①由题意可得:
移动1次后该点对应的数为0+1=1,到原点的距离为1;
移动2次后该点对应的数为1-3=-2,到原点的距离为2;
移动3次后该点对应的数为-2+6=4,到原点的距离为4;
移动4次后该点对应的数为4-9=-5,到原点的距离为5;
移动5次后该点对应的数为-5+12=7,到原点的距离为7;
移动6次后该点对应的数为7-15=-8,到原点的距离为8;

②移动(2n-1)次后该点到原点的距离为3n-2;
移动2n次后该点到原点的距离为3n-1.
③当3n-2=2015时,
解得:n=
2017
3
舍去,
②当3n-1=2015,
解得:n=672
故移动672次后该点到原点的距离为2015.
点评:归纳推理的一般步骤是:(1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表达的一般性命题(猜想).
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知x,y均为正数,且
1
x
+
9
y
=1,求x+y的最小值及取得最小值时x,y的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知U={2,3,4,5},M={3,4,5},N={2,4,5},则(∁UN)∪M=(  )
A、{4}
B、{3}
C、{3,4,5}
D、{2,3,4,5}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=2px(p>0)的焦点为F,O为坐标原点,设M是抛物线上的动点,则
|MO|
|MF|
的最大值为(  )
A、
3
3
B、
2
3
3
C、
2
3
5
D、
4
3
5

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,A=
π
2
且三个内角的正弦值成等比数列,则其最小角的正弦值(  )
A、
2
5
-2
2
B、
5
-1
2
C、
2
5
+2
2
D、
5
+1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知方程
x2
m
+
y2
m-4
=1(m∈R)表示双曲线的实数m的取值集合A,设不等式x2-(a2-3)x-3a2<0的解集为B,若x∈A是x∈B的充分不必要条件,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x2)=lnx,则f(3)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,已知1+
tanA
tanB
=
2sinC
sinB

(1)求角A的大小;
(2)当sinC=3sinB时,求tan(B-
π
3
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的中心在原点,焦点在x轴上,长轴长是短轴长的2倍,且经过点M(2,1),平行于OM的直线l在y轴上的截距为m(m≠0),l交椭圆于A、B两个不同点.
(1)求椭圆的方程;
(2)求证直线MA、MB与x轴始终围成一个等腰三角形.

查看答案和解析>>

同步练习册答案