分析 利用分析法证明该等式成立即可.
解答 证明:∵$\frac{sinx+1+cosx}{cosx+1-sinx}$=$\frac{1+sinx}{cosx}$,
∴(sinx+1+cosx)•cosx=(cosx+1-sinx)•(1+sinx),
两边展开得:
sinxcosx+cosx+cos2x=cosx+1-sinx+sinxcosx+sinx-sin2x
整理得sin2x+cos2x=1,是三角函数的平方公式;
以上步骤都是等价的,
即可证明$\frac{sinx+1+cosx}{cosx+1-sinx}$=$\frac{1+sinx}{cosx}$.
点评 本题考查了三角恒等式的证明问题,也考查了推理与证明的应用问题,是基础题目.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (-∞,4] | B. | $(\sqrt{2},4]$ | C. | $(-∞,3\sqrt{2}]$ | D. | $(\sqrt{2},3\sqrt{2}]$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com