分析 (1)利用二倍角公式化简f(x);
(2)求出A,根据余弦定理和基本不等式得出bc的最大值,代入面积公式即可.
解答 解:(1)f(x)=sin2x+$\sqrt{3}$sinxcosx=$\frac{1}{2}$-$\frac{1}{2}$cos2x+$\frac{\sqrt{3}}{2}$sin2x=sin(2x-$\frac{π}{6}$)$+\frac{1}{2}$.
∴f(x)的最小正周期T=$\frac{2π}{2}$=π,f(x)的最大值是$\frac{3}{2}$.
(2)∵f($\frac{A}{2}$)=sin(A-$\frac{π}{6}$)+$\frac{1}{2}$=1,∴sin(A-$\frac{π}{6}$)=$\frac{1}{2}$,∴A=$\frac{π}{3}$.
∵a2=b2+c2-2bccosA,∴12=b2+c2-bc,∴b2+c2=12+bc≥2bc,∴bc≤12.
∴S=$\frac{1}{2}bcsinA$=$\frac{\sqrt{3}}{4}$bc≤3$\sqrt{3}$.
∴三角形ABC面积的最大值是3$\sqrt{3}$.
点评 本题考查了三角函数的恒等变换,三角函数的性质,解三角形,属于中档题.
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{2}$ | B. | $\frac{{\sqrt{2}}}{2}$ | C. | $\frac{1}{3}$ | D. | $\frac{{\sqrt{3}}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 2π | B. | $\sqrt{3}π$ | C. | $\frac{2π}{3}$ | D. | $\frac{{\sqrt{3}π}}{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com