已知函数,且 w.w.w.k.s.5.u.c.o.m
(1) 试用含的代数式表示b,并求的单调区间;
(2)令,设函数在处取得极值,记点M (,),N(,),P(), ,请仔细观察曲线在点P处的切线与线段MP的位置变化趋势,并解释以下问题:
(I)若对任意的m (, x),线段MP与曲线f(x)均有异于M,P的公共点,试确定t的最小值,并证明你的结论;
(II)若存在点Q(n ,f(n)), x n< m,使得线段PQ与曲线f(x)有异于P、Q的公共点,请直接写出m的取值范围(不必给出求解过程)w.w.w.k.s.5.u.c.o.m
略
解法1
(Ⅰ)依题意,得
由.
从而
令
①当a>1时,
当x变化时,与的变化情况如下表:
x | |||
+ | - | + | |
单调递增 | 单调递减 | 单调递增 |
由此得,函数的单调增区间为和,单调减区间为。
②当时,此时有恒成立,且仅在处,故函数的单调增区间为R
③当时,同理可得,函数的单调增区间为和,单调减区间为
综上:
当时,函数的单调增区间为和,单调减区间为;
当时,函数的单调增区间为R;
当时,函数的单调增区间为和,单调减区间为.
(Ⅱ)由得令得
由(1)得增区间为和,单调减区间为,所以函数在处取得极值,故M()N()。
观察的图象,有如下现象:
①当m从-1(不含-1)变化到3时,线段MP的斜率与曲线在点P处切线的斜率之差Kmp-的值由正连续变为负。
②线段MP与曲线是否有异于H,P的公共点与Kmp-的m正负有着密切的关联;
③Kmp-=0对应的位置可能是临界点,故推测:满足Kmp-的m就是所求的t最小值,下面给出证明并确定的t最小值.曲线在点处的切线斜率;
线段MP的斜率Kmp
当Kmp-=0时,解得
直线MP的方程为
令
当时,在上只有一个零点,可判断函数在上单调递增,在上单调递减,又,所以在上没有零点,即线段MP与曲线没有异于M,P的公共点。
当时,.
所以存在使得
即当MP与曲线有异于M,P的公共点
综上,t的最小值为2.
(2)类似(1)于中的观察,可得m的取值范围为
解法2:
(1)同解法一.
(2)由得,令,得
由(1)得的单调增区间为和,单调减区间为,所以函数在处取得极值。故M().N()
(Ⅰ) 直线MP的方程为
由
得
线段MP与曲线有异于M,P的公共点等价于上述方程在(-1,m)上有根,即函数
上有零点.
因为函数为三次函数,所以至多有三个零点,两个极值点.
又.因此, 在上有零点等价于在内恰有一个极大值点和一个极小值点,即内有两不相等的实数根.
等价于 即
又因为,所以m 的取值范围为(2,3),从而满足题设条件的r的最小值为2.
科目:高中数学 来源: 题型:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com