精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的两个焦点分别为,短轴的两个端点分别为,点在椭圆上,且满足,当变化时,给出下列三个命题:

①点的轨迹关于轴对称;②的最小值为2;

③存在使得椭圆上满足条件的点仅有两个,

其中,所有正确命题的序号是__________

【答案】①②

【解析】分析运用椭圆的定义可得也在椭圆上,分别画出两个椭圆的图形,即可判断正确;由图象可得当的横坐标和纵坐标的绝对值相等时,的值取得最小,即可判断正确通过的变化,可得不正确.

详解

椭圆的两个焦点分别为

短轴的两个端点分别为

在椭圆

且满足

由椭圆定义可得,

即有在椭圆

对于①,换为方程不变,

则点的轨迹关于轴对称,故正确.;

对于②,由图象可得,当满足

即有

时,取得最小值,

可得

即有取得最小值为正确;

对于③,由图象可得轨迹关于轴对称,且

则椭圆上满足条件的点

不存在使得椭圆上满足条件的点不正确.

故答案为①②.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】函数f(x)=sin(ωx+φ)+ 的图象过(1,2),若f(x)相邻的零点为x1 , x2且满足|x1﹣x2|=6,则f(x)的单调增区间为(
A.[﹣2+12k,4+12k](k∈Z)
B.[﹣5+12k,1+12k](k∈Z)
C.[1+12k,7+12k](k∈Z)
D.[﹣2+6k,1+6k](k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆和点.

(1)若点是圆上任意一点,求

(2)过圆 上任意一点 与点的直线,交圆于另一点,连接,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】党的十九大报告指出,建设生态文明是中华民族永续发展的千年大计.而清洁能源的广泛使用将为生态文明建设提供更有力的支撑.沼气作为取之不尽、用之不竭的生物清洁能源,在保护绿水青山方面具有独特功效.通过办沼气带来的农村“厕所革命”,对改善农村人居环境等方面,起到立竿见影的效果.为了积极响应国家推行的“厕所革命”,某农户准备建造一个深为2米,容积为32立方米的长方体沼气池,如果池底每平方米的造价为150元,池壁每平方米的造价为120元,沼气池盖子的造价为3000元,问怎样设计沼气池能使总造价最低?最低总造价是多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ﹣mx(m∈R). (Ⅰ)当m=0时,讨论函数f(x)的单调性;
(Ⅱ)当b>a>0时,总有 >1成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆与直线,动直线过定点.

1)若直线与圆相切,求直线的方程;

2)若直线与圆相交于两点,点MPQ的中点,直线与直线相交于点N.探索是否为定值,若是,求出该定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】筒车是我国古代发明的一种水利灌溉工具,因其经济又环保,至今还在农业生产中得到使用,如左下图.假定在水流量稳定的情况下,半径为3m的筒车上的每一个盛水桶都按逆时针方向作角速度为rad/min的匀速圆周运动,平面示意图如右下图,己知筒车中心O到水面BC的距离为2m,初始时刻其中一个盛水筒位于点P0处,且∠P0OAOA//BC),则8min后该盛水筒到水面的距离为____m

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市从高二年级随机选取1000名学生,统计他们选修物理、化学、生物、政治、历史和地理六门课程(前3门为理科课程,后3门为文科课程)的情况,得到如下统计表,其中“√”表示选课,空白表示未选.

科目

方案 人数

物理

化学

生物

政治

历史

地理

220

200

180

175

135

90

(Ⅰ)在这1000名学生中,从选修物理的学生中随机选取1人,求该学生选修政治的概率;

(Ⅱ)在这1000名学生中,从选择方案一、二、三的学生中各选取2名学生,如果在这6名学生中随机选取2名,求这2名学生除选修物理以外另外两门选课中有相同科目的概率;

(Ⅲ)利用表中数据估计该市选课偏文(即选修至少两门文科课程)的学生人数多还是偏理(即选修至少两门理科课程)的学生人数多,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数f(x)=2sin(2x﹣)的图象向左平移个单位,再向上平移1个单位,得到函数y=g(x)的图象,若y=g(x)在[0,b](b>0)上至少含有10个零点,则b的最小值为

查看答案和解析>>

同步练习册答案