精英家教网 > 高中数学 > 题目详情
3.当某商品的价格为40元时,其月销售量为10000件,若该商品的价格每提高或降低2元时,则月销售量将减少或增加500件,不考虑其他因素,解答下列问题.
(1)设该商品的成本价格为32元,当按成本价销售时,求月销售量.
(2)求该商品的月销售量y(件)与价格x(元)之间的函数关系式.

分析 由题意即可求出商品的成本价格为32元,当按成本价销售时,求月销售量,当价格为x元时,可以得到函数y=10000+(40-x)×500,化简即可.

解答 解:(1)商品的成本价格为32元,当按成本价销售时,月销售量为:
(40-32)×500+10000=14000件;
(2)价格为x元,在商品提高或降低了(40-x),继而得到减少和增加的数量,
所以y=10000+(40-x)×500=-500x+30000,
因为y≥0,解得x≤60,且该商品的成本价格为32元,
∴32≤x≤60.
∴y=-500x+30000,32≤x≤60.

点评 本题考查了借用实际问题求函数解析的求法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知数列{an}的前n项和为Sn且满足an=2Sn-1Sn(n≥2),a1=1.
(1)求证:{$\frac{1}{{S}_{n}}$}是等差数列;
(2)求an的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.给出下列三个命题:
(1)当x=1时,x+$\frac{4}{x+1}$的值最小;
(2)函数y=$\frac{{x}^{2}+2}{\sqrt{{x}^{2}+1}}$有最小值2;
(3)函数y=$\sqrt{{x}^{2}+2}$+$\frac{1}{\sqrt{{x}^{2}+2}}$有最小值2;
上述命题中真命题的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设任意实数x,y满足|x|<1,|y|<1,求证:$\frac{1}{1-{x}^{2}}$+$\frac{1}{1-{y}^{2}}$≥$\frac{2}{1-xy}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.函数f(x)=k•a-x(k,a为常数,a>0且a≠1)的图象过点A(0,1),B(3,8).
(1)求函数f(x)的解析式;
(2)若函数g(x)=$\frac{f(x)+b}{f(x)-1}$是奇函数,求b的值;
(3)在(2)的条件下判断函数g(x)的单调性,并用定义证明你的结论;
(4)解不等式g(3x)+g(x-3-x2)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设f(x)是定义在实数集R上的函数,且对任意实数x,y满足f(x-y)=f(x)+f(y)+xy-1恒成立.
(1)求f(0),f(1);
(2)求函数f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知P(a,b)为正比例函数y=2x的图象上的点,且P与B(2,-1)之间的距离不超过3,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.椭圆$\frac{{x}^{2}}{{a}^{2}+1}$+$\frac{{y}^{2}}{(a+4)^{2}}$=1(a>0)的离心率的最大值是$\frac{4\sqrt{17}}{17}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.函数y=$\sqrt{2x-3}$的单调递增区间是[$\frac{3}{2}$,+∞).

查看答案和解析>>

同步练习册答案