精英家教网 > 高中数学 > 题目详情
椭圆
x2
25
+
y2
16
=1
的左、右焦点分别为F1,F2,弦AB过F1,若△ABF2的内切圆面积为π,A、B两点的坐标分别为(x1,y1)和(x2,y2),则|y2-y1|的值为(  )
A、
5
3
B、
10
3
C、
20
3
D、
5
3
分析:根据椭圆方程求得焦距|F1F2|=6,由椭圆的定义算出△ABF2的周长为4a=20,由圆面积公式算出△ABF2的内切圆半径r=1.利用内切圆的性质把△PF1F2分割成3个三角形,由三角形的面积公式算出△PF1F2的面积等于10,再利用面积相等建立关系式得到关于|y2-y1|的等式,解之即可求得|y2-y1|的值.
解答:解:椭圆
x2
25
+
y2
16
=1
中,a=5,b=4,精英家教网
∴c=
a2-b2
=3,可得焦点坐标为F1(-3,0),F2(3,0).
根据椭圆的定义得|AF1|+|AF2|=|BF1|+|BF2|=10,
∴△ABF2的周长为|AB|+|AF2|+|BF2|
=(|AF1|+|AF2|)+(|BF1|+|BF2|)=20
设△ABF2的内切圆的圆心为I,半径为r,
由内切圆面积S=πr2=π,解得r=1
S△ABF2=S△ABI+S△AF2I+S△BF2I=
1
2
|AB|r+|AF2|r+|BF2|r
=
1
2
(|AB|+|AF2|+|BF2|)×r=
1
2
×20×1=10,
又∵S△ABF2=
1
2
|F1F2|•|y2-y1|,
1
2
×6×|y2-y1|=10,解得|y2-y1|=
10
3

故选:B
点评:本题给出椭圆的内接三角形的内切圆面积,求|y2-y1|的纵坐标.着重考查了椭圆的标准方程与简单几何性质、三角形的内切圆的性质和三角形的面积公式等知识,属于中档题.解决问题的关键是熟练掌握椭圆的定义与性质,熟练运用三角形的内切圆的有关知识.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

椭圆
x2
25
+
y2
16
=1
的离心率为(  )
A、
3
5
B、
4
5
C、
3
4
D、
16
25

查看答案和解析>>

科目:高中数学 来源: 题型:

已知P为椭圆
x2
25
+
y2
16
=1
上的一点,M,N分别为圆(x+3)2+y2=1和圆(x-3)2+y2=4上的点,则|PM|+|PN|的最小值为(  )
A、5B、7C、13D、15

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•武汉模拟)若AB过椭圆 
x2
25
+
y2
16
=1 中心的弦,F1为椭圆的焦点,则△F1AB面积的最大值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若 P为椭圆
x2
25
+
y2
16
=1
上任意一点,F1、F2为左、右焦点,如图所示.
(1)若PF1的中点为M,求证:|MO|=5-
1
2
|PF1|

(2)若F1PF2=600,求|PF1|•|PF2|之值;
(3)椭圆上是否存在点P,使
PF1
PF2
=0
,若存在,求出P点的坐标,若不存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,已知三角形ABC顶点A(-3,0)和C(3,0),顶点B在椭圆
x2
25
+
y2
16
=1上,则
sinA+sinC
sinB
=
 

查看答案和解析>>

同步练习册答案