精英家教网 > 高中数学 > 题目详情
将地球看作半径为R的球,在北纬450圈上有A、B两地,且A地在东经300线上,B地在西经600线上.现要在A、B两地间开辟一条航道,则航道的最短长度为(  )
分析:欲求坐飞机从A城市飞到B城市的最短距离,即求出地球上这两点间的球面距离即可.A、B两地在同一纬度圈上,计算经度差,求出AB弦长,以及球心角,然后求出球面距离.即可得到答案.
解答:解:由已知地球半径为R,
则北纬45°的纬线圈半径为
2
2
R

又∵两座城市的经度分别为东经30°和西经60°
故连接两座城市的弦长L=
2
2
R
2
=R
则A,B两地与地球球心O连线的夹角∠AOB=
π
3

则A、B两地之间的距离是
π
3
R

故选B.
点评:本题考查球面距离及解三角形计算,考查空间想象能力,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源:2010-2011学年重庆市铜梁中学高二(下)3月月考数学试卷(理科)(解析版) 题型:选择题

将地球看作半径为R的球,在北纬45圈上有A、B两地,且A地在东经30线上,B地在西经60线上.现要在A、B两地间开辟一条航道,则航道的最短长度为( )
A.
B.
C.
D.πR

查看答案和解析>>

同步练习册答案