【题目】已知函数.
(1)当时,讨论的单调性;
(2)若有两个不同零点,,证明:且.
【答案】(1)分类讨论,详见解析;(2)详见解析.
【解析】
(1)求导后,令得或,按照与的大小分三种情况讨论即可得到答案;
(2)根据(1)知时,函数的极小值大于0,因此函数不可能有2个零点,故,
所以在单调递减,在单调递增,所以极小值,可得,再构造函数,利用导数得到在上递增,从而可得时,,设,则,所以,所以,所以。
(1).
因为,由得,或.
i)即时,在单调递减,在单调递增,在单调递减;
ii)即时,在单调递减;
iii)即时,在单调递减,在单调递增,在单调递减.
(2)由(1)知,时,的极小值为,
时,的极小值为,
时,在单调,
故时,至多有一个零点.
当时,易知在单调递减,在单调递增.
要使有两个零点,则,即,得.
令,(),则 ,所以在时单调递增,,.
不妨设,则,,, .
由在单调递减得,,即.
科目:高中数学 来源: 题型:
【题目】学校准备将名同学全部分配到运动会的田径、拔河和球类个不同项目比赛做志愿者,每个项目至少 名,则不同的分配方案有________种(用数字作答).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,游客从某旅游景区的景点处下上至处有两种路径.一种是从沿直线步行到,另一种是先从沿索道乘缆车到,然后从沿直线步行到.现有甲、乙两位游客从处下山,甲沿匀速步行,速度为.在甲出发后,乙从乘缆车到,在处停留后,再从匀速步行到,假设缆车匀速直线运动的速度为,山路长为1260,经测量,.
(1)求索道的长;
(2)问:乙出发多少后,乙在缆车上与甲的距离最短?
(3)为使两位游客在处互相等待的时间不超过,乙步行的速度应控制在什么范围内?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题
①命题“若,则”的逆命题是真命题;
②若,,则在上的投影是;
③在的二项展开式中,有理项共有4项;
④已知一组正数,,,的方差为,则数据,,,的平均数为4;
⑤复数的共轭复数是,则.
其中真命题的个数为( )
A.0B.1C.2D.3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】数列,定义为数列的一阶差分数列,其中.
(1)若,试判断是否是等差数列,并说明理由;
(2)若,,求数列的通项公式;
(3)对(2)中的数列,是否存在等差数列,使得对一切都成立,若存在,求出数列的通项公式;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数;
(1)当时,解不等式;
(2)若,且在闭区间上有实数解,求实数的范围;
(3)如果函数的图象过点,且不等式对任意均成立,求实数的取值集合.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=2sinx-xcosx-x,f′(x)为f(x)的导数.
(1)证明:f′(x)在区间(0,π)存在唯一零点;
(2)若x∈[0,π]时,f(x)≥ax,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直二面角α﹣l﹣β中,A∈α,B∈β,A,B都不在l上,AB与α所成角为x,AB与β所成角为y,AB与l所成角为z,则cos2x+cos2y+sin2z的值为( )
A.B.2C.3D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】经市场调查,某商品每吨的价格为万元时,该商品的月供给量为吨,;月需求量为吨,,当该商品的需求量大于供给量时,销售量等于供给量;当该商品的需求量不大于供给量时,销售量等于需求量,该商品的月销售额等于月销售量与价格的乘积.
(1)已知,若某月该商品的价格为x=7,求商品在该月的销售额(精确到1元);
(2)记需求量与供给量相等时的价格为均衡价格,若该商品的均衡价格不低于每吨6万元,求实数的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com