精英家教网 > 高中数学 > 题目详情

【题目】若直线与不等式组表示的平面区域无公共点,则的取值范围是

A. B. C. D. R

【答案】C

【解析】

作出不等式组对应的平面区域,利用直线ax+by=1与平面区域无公共点建立条件关系,即可得到结论.

不等式组表示的平面区域是由A(1,1),B(﹣1,1),C(0,﹣1)围成的三角形区域(包含边界).

直线ax+by=1与表示的平面区域无公共点,

a,b满足:

(a,b)在如图所示的三角形区域(除边界且除原点).

设z=2a+3b,平移直线z=2a+3b,当直线经过点A1(0,1)时,z最大为z=3,

当经过点B1时,z最小,

解得,即B1(﹣2,﹣1),

此时z=﹣4﹣3=﹣7,

故2a+3b的取值范围是(﹣7,3).

故选:C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

1)当时,求的最大值和最小值;

2)求实数的取值范围,使在区间上是单调函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某城市为鼓励人们绿色出行,乘坐地铁,地铁公司决定按照乘客经过地铁站的数量实施分段优惠政策,不超过站的地铁票价如下表:

乘坐站数

票价(元)

现有甲、乙两位乘客同时从起点乘坐同一辆地铁,已知他们乘坐地铁都不超过站,且他们各自在每个站下车的可能性是相同的.

(1)若甲、乙两人共付费元,则甲、乙下车方案共有多少种?

(2)若甲、乙两人共付费元,求甲比乙先到达目的地的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某城市的公交公司为了方便市民出行,科学规划车辆投放,在一个人员密集流动地段增设一个起点站,为了研究车辆发车间隔时间与乘客等候人数之间的关系,经过调查得到如下数据:

间隔时间/

10

11

12

13

14

15

等候人数y/

23

25

26

29

28

31

调查小组先从这组数据中选取组数据求线性回归方程,再用剩下的组数据进行检验.检验方法如下:先用求得的线性回归方程计算间隔时间对应的等候人数,再求与实际等候人数的差,若差值的绝对值都不超过,则称所求方程是恰当回归方程

1)从这组数据中随机选取2组数据,求选取的这组数据的间隔时间不相邻的概率;

2)若选取的是后面组数据,求关于的线性回归方程,并判断此方程是否是恰当回归方程

附:对于一组数据……,其回归直线的斜率和截距的最小二乘估计分别为:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班共有学生40人,将一次数学考试成绩(单位:分)绘制成频率分布直方图,如图所示。

(1)请根据图中所给数据,求出的值;

(2)从成绩在[5070)内的学生中随机选3名学生,求这3名学生的成绩都在[6070)内的概率;

(3)为了了解学生本次考试的失分情况,从成绩在[5070)内的学生中随机选取3人的成绩进行分析,用X表示所选学生成绩在[ 6070)内的人数,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数y=f1(x)的图象以原点为顶点且过点(1,1),反比例函数y=f2(x)的图象与直线y=x的两个交点间距离为8,f(x)= f1(x)+ f2(x).

(Ⅰ) 求函数f(x)的表达式;

(Ⅱ) 证明:a>3,关于x的方程f(x)= f(a)有三个实数解.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)解不等式

(2)设函数的最小值为c,实数a,b满足,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥 中,是正三角形,四边形ABCD是矩形,且平面平面.

(1)若点E是PC的中点,求证:平面BDE;

(2)若点F在线段PA上,且,当三棱锥的体积为时,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求函数的值域;

(2)若时,函数的最小值为,求的值和函数的最大值.

查看答案和解析>>

同步练习册答案