精英家教网 > 高中数学 > 题目详情

【题目】用一根长为分米的铁丝制作一个长方体框架(12条棱组成),使得长方体框架的底面长是宽的倍.在制作时铁丝恰好全部用完且损耗忽略不计.现设该框架的底面宽是分米,表示该长方体框架所占的空间体积(即长方体的体积).

(1)试求函数的解析式及其定义域;

(2)当该框架的底面宽取何值时,长方体框架所占的空间体积最大,并求出最大值.

【答案】(1)答案见解析;(2)当该框架的底面宽为8分米时,长方体框架所占的空间体积最大,最大值为1536立方分米.

【解析】

(1)由题意,当长方体框架的底面宽是分米时,其长是分米,高是分米,

所以

,解得,即函数的定义域为

(2)法1:因为,

所以 ,

当且仅当,,有最大值,

最大值为

即当该框架的底面宽为8分米时,长方体框架所占的空间体积最大,最大值为1536立方分米.

2:因为

所以

易得当,;当,

从而在区间上单调递增,在区间上单调递减,

故当,有最大值,最大值为

即当该框架的底面宽为8分米时,长方体框架所占的空间体积最大,最大值为1536立方分米.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】定义在上的函数,其导函数为,且,若当时,,则

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某技术人员在某基地培育了一种植物,一年后,该技术人员从中随机抽取了部分这种植物的高度(单位:厘米)作为样本(样本容量为)进行统计,绘制了如下频率分布直方图,已知抽取的样本植物高度在内的植物有8,内的植物有2.

(Ⅰ)求样本容量和频率分布直方图中的,的值;

(Ⅱ)在选取的样本中,从高度在内的植物中随机抽取3,设随机变量表示所抽取的3株高度在内的株数,求随机变量的分布列及数学期望;

(Ⅲ)据市场调研,高度在内的该植物最受市场追捧.老王准备前往该基地随机购买该植物50.现有两种购买方案,方案一:按照该植物的不同高度来付费,其中高度在内的每株10,其余高度每株5;方案二:按照该植物的株数来付费,每株6.请你根据该基地该植物样本的统计分析结果为决策依据,预测老王采取哪种付费方式更便宜?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面,四边形满足,点的中点,点边上的动点,且.

(1)求证:平面平面

(2)是否存在实数,使得二面角的余弦值为?若存在,试求出实数的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程为(其中为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,并取相同的单位长度,曲线的极坐标方程为

(1)求直线的普通方程和曲线的直角坐标方程;

(2)过点作直线的垂线交曲线两点,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知px2-(3+a)x+3a<0,其中a<3;qx2+4x-5>0.

(1)若pq的必要不充分条件,求实数a的取值范围;

(2)若pq的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在长方体中满足,若点在棱上点在棱上,且.

(1)求证:;

(2)当的中点时,求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某次测量中得到的A样本数据如下:82848486868688888888.B样本数据恰好是A样本数据都加2后所得数据,则AB两样本的下列数字特征对应相同的是

A. 众数 B. 平均数 C. 中位数 D. 标准差

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】十九大提出,坚决打赢脱贫攻坚战,某帮扶单位为帮助定点扶贫村真脱贫,坚持扶贫同扶智相结合,帮助贫困村种植蜜柚,并利用电商进行销售,为了更好地销售,现从该村的蜜柚树上随机摘下了个蜜柚进行测重,其质量分别在,,(单位:克)中,其频率分布直方图如图所示,

(Ⅰ)已经按分层抽样的方法从质量落在的蜜柚中抽取了个,现从这个蜜柚中随机抽取个。求这个蜜柚质量均小于克的概率:

(Ⅱ)以各组数据的中间值代表这组数据的平均水平,以频率代表概率,已知该贫困村的蜜柚树上大约还有个蜜柚等待出售,某电商提出了两种收购方案:

方案一:所有蜜柚均以元/千克收购;

方案二:低于克的蜜柚以元/个收购,高于或等于克的以元/个收购.

请你通过计算为该村选择收益最好的方案.

查看答案和解析>>

同步练习册答案