【题目】已知函数f(x)=sinxcosxcos2x+1
(1)求f(x)的最小正周期和最大值,并写出取得最大值时x的集合;
(2)将f(x)的函数图象向左平移φ(φ>0)个单位后得到的函数g(x)是偶函数,求φ的最小值.
【答案】(1)最小正周期为Tπ,f(x)取得最大值为2,此时x的集合为{x|x=kπ
,k∈Z}.(2)
【解析】
(1)由三角函数公式化简可得f(x)=sin(2x)+1,由此可得最小正周期及最大值,由当且仅当2x
2kπ
,k∈Z时,f(x)取得最大值,解出x的集合;
(2)通过平移变换可得g(x)=sin(2x+2φ)+1,若函数g(x)是偶函数,运用三角函数的诱导公式,令
,k∈Z即可,从而得到φ的最小值.
(1)f(x)=sinxcosxcos2x+1
sin2x
cos2x+1=sin(2x
)+1,
所以函数f(x)的最小正周期为Tπ,
当且仅当2x2kπ
,k∈Z时,f(x)取得最大值为2,
此时x的集合为{x|x=kπ,k∈Z}.
(2)g(x)=f(x+φ)=sin(2x+2φ)+1,
因为g(x)是偶函数,
所以2φkπ
,k∈Z,即φ
kπ
,k∈Z,
所以φ的最小值为.
科目:高中数学 来源: 题型:
【题目】“红灯停,绿灯行”,这是我们每个人都应该也必须遵守的交通规则.凑齐一拨人就过马路﹣﹣不看交通信号灯、随意穿行交叉路口的“中国式过马路”不仅不文明而且存在很大的交通安全隐患.一座城市是否存在“中国式过马路”是衡量这座城市文明程度的重要指标.某调查机构为了了解路人对“中国式过马路”的态度,从马路旁随机抽取30名路人进行了问卷调查,得到了如下列联表:
男性 | 女性 | 合计 | |
反感 | 10 | ||
不反感 | 8 | ||
合计 | 30 |
已知在这30人中随机抽取1人抽到反感“中国式过马路”的路人的概率是.
(1)请将上面的列联表补充完整(在答题卷上直接填写结果,不需要写求解过程),并据此列联表数据判断是否有95%的把握认为反感“中国式过马路”与性别有关?
(2)若从这30人中的女性路人中随机抽取2人参加一项活动,记反感“中国式过马路”的人数为X,求X的分布列及其数学期望.
附:,其中n=a+b+c+d
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左、右焦点分别为
,长轴长为4,且过点
.
(1)求椭圆C的方程;
(2)过的直线l交椭圆C于
两点,过A作x轴的垂线交椭圆C与另一点Q(Q不与
重合).设
的外心为G,求证
为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对称轴为坐标轴的椭圆的焦点为
,
,
在
上.
(1)求椭圆的方程;
(2)设不过原点的直线
与椭圆
交于
,
两点,且直线
,
,
的斜率依次成等比数列,则当
的面积为
时,求直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C1的极坐标方程为ρ=4cosθ,直线C2的参数方程为(t为参数).
(1)求曲线C1的直角坐标方程和直线C2的普通方程;
(2)若P(1,0),直线C2与曲线C1相交于A,B两点,求|PA||PB|的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学拟在高一下学期开设游泳选修课,为了了解高一学生喜欢游泳是否与性别有关,该学校对100名高一新生进行了问卷调查,得到如下列联表:
喜欢游泳 | 不喜欢游泳 | 合计 | |
男生 | 10 | ||
女生 | 20 | ||
合计 |
已知在这100人中随机抽取1人抽到喜欢游泳的学生的概率为.
(1)请将上述列联表补充完整;
(2)并判断是否有99.9%的把握认为喜欢游泳与性别有关?并说明你的理由;
(3)已知在被调查的学生中有5名来自甲班,其中3名喜欢游泳,现从这5名学生中随机抽取2人,求恰好有1人喜欢游泳的概率.
下面的临界值表仅供参考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式:,其中
)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图空间几何体中,
与
,
均为边长为
的等边三角形,平面
平面
,平面
平面
.
(Ⅰ)求线段的长度.
(Ⅱ)试在平面内作一条直线,使得直线上任意一点
与
的连线
均与平面
平行,并给出详细证明;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆+
=1(a>b>0)的一个焦点为F1,若椭圆上存在一个点P,满足以椭圆短轴为直径的圆与线段PF1相切于该线段的中点,则椭圆的离心率为________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com