精英家教网 > 高中数学 > 题目详情
1.设复数z满足(1-3i)z=3+i,则z=(  )
A.一iB.iC.$\frac{3}{5}$-$\frac{4}{5}$iD.$\frac{3}{5}$+$\frac{4}{5}$i

分析 利用复数的运算法则即可得出.

解答 解:∵(1-3i)z=3+i,
∴$z=\frac{3+i}{1-3i}$=$\frac{i(-3i+1)}{1-3i}$=i,
故选:B.

点评 本题考查了复数的运算法则,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.设O是△ABC所在平面上一点,H是△ABC的垂心,并且$\overrightarrow{OH}$=$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OC}$,∠A=60°,∠B=45°,|$\overrightarrow{BC}$|=2$\sqrt{3}$.
(1)求△ABC的外接圆半径的长;
(2)求$\overrightarrow{|OH|}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在矩形ABCD中,AB=2$\sqrt{3}$,BC=2,现把矩形ABCD沿对角线AC折起,当以A,B,C,D四点为顶点的三棱锥体积最大时,直线BD和平面ABC所成的角的正弦值为(  )
A.$\frac{\sqrt{21}}{5}$B.$\frac{\sqrt{21}}{7}$C.$\frac{\sqrt{30}}{10}$D.$\frac{\sqrt{70}}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设P和Q是两个集合,定义集合P+Q={x|x∈P}或x∈Q且x∉P∩Q.若P={x|x2-5x-6≤0},Q={x|y=log2(x2-2x-15)},那么P+Q等于(  )
A.[-1,6]B.(-∞,-1]∪[6,+∞)C.(-3,5)D.(-∞,-3)∪[-1,5]∪(6,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在△ABC中,∠ACB=90°,D为BC的中点,PA⊥平面ABC,如果PB,PC与平面ABC所成角分别为30°、60°,那么PD与平面ABC所成角的大小为45°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在四棱锥P-ABCD中,O是AD的中点,PO⊥平面ABCD,△PAD是等边三角形,AB=BC=$\frac{1}{2}$AD=1,cos∠ADB=$\frac{2\sqrt{5}}{5}$,AD∥BC,AD<BD.
(1)证明:平面POC⊥平面PAD;
(2)求直线PD与平面PAB所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=x-1-alnx(其中a为参数).
(Ⅰ)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)若对任意x>0都有f(x)≥0成立,求a的取值范围;
(Ⅲ)点A(x1,y1),B(x2,y2)为曲线y=f(x)上的两点,且0<x1<x2,设直线AB的斜率为k,${x_0}=\frac{{{x_1}+{x_2}}}{2}$,当k>f'(x0)时,证明a<0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.函数f(x)在定义域[-1,1]内是递增的函数,而且f(x-1)<f(2x-1),则x的取值范为(0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数$f(x)=\left\{\begin{array}{l}{2^x},x≤0\\ a{log_2}x,x>0\end{array}\right.$,且f(-1)=f(2),则$f({\frac{1}{4}})$=-1.

查看答案和解析>>

同步练习册答案