精英家教网 > 高中数学 > 题目详情
4.王先生购买了一部手机,欲使用中国移动“神州行”卡或加入联通的130网,经调查其收费标准见下表:(注:本地电话费以分为计费单位,长途话费以秒为计费单位.)
网络月租费本地话费长途话费
甲:联通13012元0.36元/分0.06元/秒
乙:移动“神州行”0.60元/分0.07元/秒
若王先生每月拨打本地电话的时间是拨打长途电话时间的5倍,若要用联通130应最少打多长时间的长途电话才合算.(  )
A.300秒B.400秒C.500秒D.600秒

分析 根据每月的通话时间和甲方式的收费标准,可知所需花费=月租费+本地话费+长途话费,可求所需话费y(元)与通话时间x(分钟)的函数关系式;将乙方式所需话费y(元)与通话时间x(分钟)的函数关系式求出,将两个式子进行比较,可得出较为省钱的入网方式.

解答 解:每月接打本地电话的时间是接打长途电话的5倍,王先生每月拨打长途电话时间为x(分钟),他所需话费y(元),联通130他所需话费y(元)与通话时间x(分钟)的函数关系式为y=12+0.36×5x+3.6x(x>0);
移动“神州行”他所需话费y(元)与通话时间x(分钟)的函数关系式为:y=0.6×5x+4.2x,
若要用联通130应最少打多长时间的长途电话才合算,可得:12+0.36×5x+3.6x<0.6×5x+4.2x,
解得:x>$\frac{20}{3}$(分钟)=400秒.
故选:B.

点评 本题主要是应用数学模型来解决实际问题,考查一次函数的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.如果实数x,y满足条件$\left\{\begin{array}{l}{2x-y≥0}\\{x+2y-2≥0}\\{x-1≤0}\end{array}\right.$,则z=x+y的最小值为$\frac{6}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知点A(1,0),直线l:x=-1,两个动圆均过点A且与l相切,其圆心分别为C1、C2,若动点M满足$2\overrightarrow{{C_2}M}=\overrightarrow{{C_2}{C_1}}+\overrightarrow{{C_2}A}$,则M的轨迹方程为y2=2x-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知点A(1,1),B(2,1),C(1,2),若-1≤λ≤2,2≤μ≤3,则$|{λ\overrightarrow{AB}+μ\overrightarrow{AC}}|$的取值范围是(  )
A.[1,10]B.$[{\sqrt{5},\sqrt{13}}]$C.[1,5]D.$[{2,\sqrt{13}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知:$(1-2i)\overline z=5+10i$(i是虚数单位 ),则z=-3-4i.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.如图,已知双曲线C的右焦点为F,过它的右顶点A作实轴的垂线,与其一条渐近线相交于点B;若双曲线C的焦距为4,△OFB为等边三角形(O为坐标原点,即双曲线C的中心),则双曲线C的方程为${x^2}-\frac{y^2}{3}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图所示,点E,F在以AB为直径的圆O(O为圆心)上,AB∥EF,平面ABCD⊥平面ABEF,且AB=2,AD=EF=1
(Ⅰ)设FC的中点为M,求证:OM∥面DAF;
(Ⅱ)求证:AF⊥面CBF.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设x取实数,则f(x)与g(x)表示同一个函数的是(  )
A.$f(x)={x^2},g(x)=\sqrt{x^2}$B.$f(x)=\frac{{{{(\sqrt{x})}^2}}}{x},g(x)=\frac{x}{{{{(\sqrt{x})}^2}}}$
C.f(x)=1,g(x)=(x-1)0D.$f(x)=\frac{{{x^2}-9}}{x+3},g(x)=x-3$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知集合M={x|x2-2x-3≤0},N={x|y=lgx},则M∩N=(0,3].

查看答案和解析>>

同步练习册答案