【题目】某果农从经过筛选(每个水果的大小最小不低于50克,最大不超过100克)的10000个水果中抽取出100个样本进行统计,得到如下频率分布表:
级别 | 大小(克) | 频数 | 频率 |
一级果 | 5 | 0.05 | |
二级果 | |||
三级果 | 35 | ||
四级果 | 30 | ||
五级果 | 20 | ||
合计 | 100 |
请根据频率分布表中所提供的数据,解得下列问题:
(1)求的值,并完成频率分布直方图;
(2)若从四级果,五级果中按分层抽样的方法抽取5个水果,并从中选出2个作为展品,求2个展品中仅有1个是四级果的概率;
(3)若将水果作分级销售,预计销售的价格元/个与每个水果的大小克关系是:,则预计10000个水果可收入多少元?
【答案】(1)的值为10,的值为0.35;作图见解析(2)(3)元
【解析】
(1)根据样本总数为可求,由频数样本总数可求;计算出各组频率,再计算出频率/组距即可画出频率分布直方图.
(2)根据分层抽样可得抽取的4级有个,抽取5级果有个,设三个四级果分别记作:,二个五级果分别记作:,利用古典概型的概率计算公式即可求解.
(3)计算出100个水果的收入即可预计10000个水果可收入.
(1)的值为10,的值为0.35
(2)四级果有30个,五级果有20个,按分层抽样的方法抽取5个水果,
则抽取的4级果有个,5级果有个.
设三个四级果分别记作:,二个五级果分别记作:,
从中任选二个作为展品的所有可能结果是,
共有10种,
其中两个展品中仅有一个是四级果的事件为,
包含共个,
所求的概率为.
(3)100个水果的收入为
(元)
所以10000个水果预计可收入(元).
科目:高中数学 来源: 题型:
【题目】已知函数,.
(1)若函数在区间上的最大值和最小值之和为6,求实数的值;
(2)设函数,若函数在区间上恒有零点,求实数的取值范围;
(3)在问题(2)中,令,比较与0的大小关系,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,AOB是一块半径为r的扇形空地,.某单位计划在空地上修建一个矩形的活动场地OCDE及一矩形停车场EFGH,剩余的地方进行绿化.若,设
(Ⅰ)记活动场地与停车场占地总面积为,求的表达式;
(Ⅱ)当为何值时,可使活动场地与停车场占地总面积最大.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆: 的左、右焦点分别为和,离心率是,直线过点交椭圆于, 两点,当直线过点时, 的周长为.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)当直线绕点运动时,试求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一元线性同余方程组问题最早可见于中国南北朝时期(公元世纪)的数学著作《孙子算经》卷下第二十六题,叫做“物不知数”问题,原文如下:有物不知数,三三数之剩二,五五数之剩三,问物几何?即,一个整数除以三余二,除以五余三,求这个整数.设这个整数为,当时, 符合条件的共有_____个.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设。,,,是中的数所成的数列,它包含的不以1结尾的任何排列,即对于的四个数的任意一个不以1结尾的排列,,都有,,,,使得,并且,求这种数列的项数的最小值。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com