精英家教网 > 高中数学 > 题目详情

【题目】某果农从经过筛选(每个水果的大小最小不低于50克,最大不超过100克)的10000个水果中抽取出100个样本进行统计,得到如下频率分布表:

级别

大小(克)

频数

频率

一级果

5

0.05

二级果

三级果

35

四级果

30

五级果

20

合计

100

请根据频率分布表中所提供的数据,解得下列问题:

1)求的值,并完成频率分布直方图;

2)若从四级果,五级果中按分层抽样的方法抽取5个水果,并从中选出2个作为展品,求2个展品中仅有1个是四级果的概率;

3)若将水果作分级销售,预计销售的价格/个与每个水果的大小克关系是:,则预计10000个水果可收入多少元?

【答案】1的值为10的值为0.35;作图见解析(23

【解析】

1)根据样本总数为可求,由频数样本总数可求;计算出各组频率,再计算出频率/组距即可画出频率分布直方图.

2)根据分层抽样可得抽取的4级有个,抽取5级果有个,设三个四级果分别记作:,二个五级果分别记作:,利用古典概型的概率计算公式即可求解.

3)计算出100个水果的收入即可预计10000个水果可收入.

1的值为10的值为0.35

2)四级果有30个,五级果有20个,按分层抽样的方法抽取5个水果,

则抽取的4级果有个,5级果有.

设三个四级果分别记作:,二个五级果分别记作:

中任选二个作为展品的所有可能结果是

共有10种,

其中两个展品中仅有一个是四级果的事件为

包含个,

所求的概率为.

3100个水果的收入为

(元)

所以10000个水果预计可收入(元).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若函数在区间上的最大值和最小值之和为6,求实数的值;

2)设函数,若函数在区间上恒有零点,求实数的取值范围;

3)在问题(2)中,令,比较0的大小关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(),曲线在点处的切线方程为.

(1)求实数的值,并求的单调区间;

(2)试比较的大小,并说明理由;

(3)求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在长方体中,若分别是棱的中点,则必有( )

A.

B.

C. 平面平面

D. 平面平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,AOB是一块半径为r的扇形空地,.某单位计划在空地上修建一个矩形的活动场地OCDE及一矩形停车场EFGH,剩余的地方进行绿化.若,设

(Ⅰ)记活动场地与停车场占地总面积为,求的表达式;

(Ⅱ)当为何值时,可使活动场地与停车场占地总面积最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将平面上每个点都以红、蓝两色之一着色,证明:存在这样的两个相似三角形,它们的相似比为1995,并且每一个三角形的三个顶点同色。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的左、右焦点分别为,离心率是,直线过点交椭圆于 两点,当直线过点时, 的周长为.

求椭圆的标准方程;

当直线绕点运动时,试求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一元线性同余方程组问题最早可见于中国南北朝时期(公元世纪)的数学著作《孙子算经》卷下第二十六题,叫做“物不知数”问题,原文如下:有物不知数,三三数之剩二,五五数之剩三,问物几何?即,一个整数除以三余二,除以五余三,求这个整数.设这个整数为,当时, 符合条件的共有_____个.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中的数所成的数列,它包含的不以1结尾的任何排列,即对于的四个数的任意一个不以1结尾的排列,都有,使得,并且,求这种数列的项数的最小值。

查看答案和解析>>

同步练习册答案