A. | 3 | B. | 2 | C. | 1 | D. | $\frac{5}{2}$ |
分析 建立如图所示的直角坐标系,设正方形的边长为1,可以得到$\overrightarrow{AP}=λ\overrightarrow{AB}+μ\overrightarrow{AE}$的坐标表示,进而得到答案.
解答 解:由题意,设正方形的边长为1,建立坐标系如图,
则B(1,0),E(-1,1),
∴$\overrightarrow{AB}$=(1,0),$\overrightarrow{AE}$=(-1,1),
∵$\overrightarrow{AP}=λ\overrightarrow{AB}+μ\overrightarrow{AE}$=(λ-μ,μ),
又∵P是BC的中点时,
∴$\overrightarrow{AP}$=(1,$\frac{1}{2}$),
∴$\left\{\begin{array}{l}λ-μ=1\\ μ=\frac{1}{2}\end{array}\right.$,
解得:$\left\{\begin{array}{l}λ=\frac{3}{2}\\ μ=\frac{1}{2}\end{array}\right.$,
∴λ+μ=2,
故选:B
点评 本题考查的知识点是向量在几何中的应用,向量加减的几何意义,数形结合思想,难度中档.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (-2$\sqrt{2}$,2$\sqrt{2}$) | B. | [-2,2$\sqrt{2}$) | C. | (-2$\sqrt{2}$,-2] | D. | [2,2$\sqrt{2}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 充分且不必要条件 | B. | 必要且不充分条件 | ||
C. | 充要条件 | D. | 既非充分也非必要条件 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com