(本小题满分14分)设函数,其图象对应的曲线设为G.(Ⅰ)设、、,为经过点(2,2)的曲线G的切线,求的方程;
(Ⅱ)已知曲线G在点A、B处的切线的斜率分别为0、,求证:;
(Ⅲ)在(Ⅱ)的条件下,当时,恒成立,求常数的最小值.
(Ⅰ)(Ⅱ)略(Ⅲ)
(Ⅰ)由题设,∴,由于点(2,2)不在曲线G上,
可设切点为,所求切线方程为,由,消去得,∴,或,即对应的切点为(0,0),或,
当时,,,所求的切线方程为,…2分
当时,,,所求切线方程为;…4分
(Ⅱ)由已知,依题意有
,,即,
从而、、三数中至少有一个正数一个负数,∴总有,,
若,由有,∴,∴,
又,∴,故得,从而,矛盾,
∴必有,∴ ,∴可得;………8分
(Ⅲ)即, 整理即得,设,则
设为的函数,由条件(Ⅱ),欲不等式恒成立,即在时恒成立,∴,∴,解得,或,
依题意,∴,即所求的的最小值为.
本题综合考查曲线的概念、一次函数的性质、导数的几何意义、不等式的解法与证明,属难题.
科目:高中数学 来源: 题型:
3 |
π |
4 |
π |
4 |
π |
2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分14分)设椭圆C1的方程为(a>b>0),曲线C2的方程为y=,且曲线C1与C2在第一象限内只有一个公共点P。(1)试用a表示点P的坐标;(2)设A、B是椭圆C1的两个焦点,当a变化时,求△ABP的面积函数S(a)的值域;(3)记min{y1,y2,……,yn}为y1,y2,……,yn中最小的一个。设g(a)是以椭圆C1的半焦距为边长的正方形的面积,试求函数f(a)=min{g(a), S(a)}的表达式。
查看答案和解析>>
科目:高中数学 来源:2011年江西省抚州市教研室高二上学期期末数学理卷(A) 题型:解答题
(本小题满分14分)
已知=2,点()在函数的图像上,其中=.
(1)证明:数列}是等比数列;
(2)设,求及数列{}的通项公式;
(3)记,求数列{}的前n项和,并证明.
查看答案和解析>>
科目:高中数学 来源:2015届山东省威海市高一上学期期末考试数学试卷(解析版) 题型:解答题
(本小题满分14分)
某网店对一应季商品过去20天的销售价格及销售量进行了监测统计发现,第天()的销售价格(单位:元)为,第天的销售量为,已知该商品成本为每件25元.
(Ⅰ)写出销售额关于第天的函数关系式;
(Ⅱ)求该商品第7天的利润;
(Ⅲ)该商品第几天的利润最大?并求出最大利润.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年广东省高三下学期第一次月考文科数学试卷(解析版) 题型:解答题
(本小题满分14分)已知的图像在点处的切线与直线平行.
⑴ 求,满足的关系式;
⑵ 若上恒成立,求的取值范围;
⑶ 证明:()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com