精英家教网 > 高中数学 > 题目详情
已知向量a=(
1
2
,-
3
2
)
,若向量b与a反向,且|b|=2,则向量
b
的坐标是
 
分析:先根据条件求出|
a
|=1,再结合向量b与
a
反向,且|
b
|=2可得
b
=-2
a
,即可求出结论.
解答:解:因为:向量a=(
1
2
,-
3
2
)

∴|
a
|=1,
∵向量b与
a
反向,且|
b
|=2
b
=-2
a
=(-1,
3
).
故答案为:(-1,
3
).
点评:从最近几年命题来看,向量为每年必考考点,都是以选择题呈现,从2006到2009年几乎各省都对向量的运算进行了考查,主要考查向量的数量积的运算,结合最近几年的高考题,向量这部分知识仍是继续命题的热点.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
a
=(
1
2
3
2
)
b
=(1,0),则|
a
+
b
|=
 
;则向量
a
与向量
a
-
b
的夹角为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(
1
2
,k),
b
=(k-1,4)
,若
a
b
,则实数k的值为(  )
A、-1或2
B、
1
9
C、-
1
7
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•许昌三模)已知向量
a
=(
1
2
1
2
sinx+
3
2
cosx)
与 
b
=(1,y)
共线,设函数y=f(x).
(1)求函数f(x)的周期及最大值;
(2)已知锐角△ABC中的三个内角分别为A、B、C,若有f(A-
π
3
)=
3
,边BC=
7
sinB=
21
7
,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(
1
2
3
2
)
,向量
b
=(-1,0)
,向量
c
满足
a
+
b
+
c
=
0

(1)求证:(
a
-
b
)⊥
c
;(2)若
a
-k
b
2
b
+
c
共线,求实数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•汕头二模)已知向量 
a
=(
1
2,
3
2
)
b
=(cosx,sinx);
(1)若
a
b
,求tan(x-
π
4
)
的值;
(2)若函数f(x)=
a
b
,求函数f(x)的最小正周期和单调递增区间.

查看答案和解析>>

同步练习册答案