精英家教网 > 高中数学 > 题目详情
(本小题满分14分)如图,已知直线OP1OP2为双曲线E:的渐近线,△P1OP2的面积为,在双曲线E上存在点P为线段P1P2的一个三等分点,且双曲线E的离心率为.

(1)若P1P2点的横坐标分别为x1x,则x1x2之间满足怎样的关系?并证明你的结论;
(2)求双曲线E的方程;
(3)设双曲线E上的动点,两焦点,若为钝角,求点横坐标的取值范围.
(1)∴x1·x2;(2)=1;(3)-,-2)∪(2,)

试题分析:(1)设双曲线方程为=1,由已知得
    ∴  ∴渐近线方程为y=±x   …………2分
P1(x1x1P2(x,-x2)
设渐近线yx的倾斜角为θ,则tanθ ∴sin2θ
|OP1||OP2|sin2θ·
x1·x2                                              …………5分
(2)不妨设P所成的比为λ=2,P(xy), 则
x y   
x1+2x2=3x x1-2x2=2y                                    …………7分
∴(3x)2-(2y)2=8x1x2=36  
=1 即为双曲线E的方程                                …………9分
(3)由(2)知C,∴F1(-,0) F2(,0) 设M(x0y0)
yx-9,=(--x0,-y0=(x0,-y0)
·x-13+yx-22                     …………12分
若∠F1MF2为钝角,则x-22<0
∴|x0|< 又|x0|>2
x0的范围为(-,-2)∪(2,)            ……14分
点评:本题主要考查双曲线的标准方程和性质、数量积的应用等基础知识,考查曲线和方程的关系等解析几何的基本思想方法
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图椭圆的两个焦点为和顶点构成面积为32的正方形.

(1)求此时椭圆的方程;
(2)设斜率为的直线与椭圆相交于不同的两点的中点,且. 问:两点能否关于直线对称. 若能,求出的取值范围;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)
已知椭圆C的对称轴为坐标轴,且短轴长为4,离心率为
(Ⅰ)求椭圆C的方程;
(Ⅱ)设椭圆C的焦点在y轴上,斜率为1的直线l与C相交于A,B两点,且
,求直线l的方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设点P(x,y)在椭圆上,求的最大、最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设F1和F2为双曲线的两个焦点,点在双曲线上且满足,则的面积是(     )。
A.1B.C.2D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若双曲线的一条渐近线方程为,则此双曲线的离心率是____________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知抛物线的准线与双曲线相切,则双曲线的离心率        

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知动点的距离比它到轴的距离多一个单位.
(Ⅰ)求动点的轨迹的方程;
(Ⅱ)过点作曲线的切线,求切线的方程,并求出与曲线轴所围成图形的面积

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若椭圆中心在原点,对称轴为坐标轴,长轴长为,离心率为,则该椭圆的方程为(    )
A.B.
C.D.

查看答案和解析>>

同步练习册答案