精英家教网 > 高中数学 > 题目详情

【题目】已知直三棱柱中的底面为等腰直角三角形,,点分别是边上动点,若直线平面,点为线段的中点,则点的轨迹为  

A. 双曲线的一支一部分 B. 圆弧一部分

C. 线段去掉一个端点 D. 抛物线的一部分

【答案】C

【解析】

画出图形,利用直线与平面平行以及垂直关系,然后得出Q点的轨迹为线段.

如图作平面PQRK∥平面BCC1B1,可得到点MN为平面PQRK与边的交点,

MN的中点D,由对称性可知,在梯形NQRM中,D到底面ABC的距离DF始终为三棱柱高的一半,故Q落在到底面ABC距离为三棱柱高的一半的平面上,且与底面ABC平行.

又D在底面的投影F始终在底面BC的高线AE上,即Q落在过底面BC的高线且与底面垂直的平面上,

所以Q在两个面的交线上,又只能落在柱体内,故为线段OH,又直线平面,所以去掉O点,故选C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数的最大值为,其图像相邻的两条对称轴之间的距离为,且的图像关于点对称,则下列结论正确的是( .

A.函数的图像关于直线对称

B.时,函数的最小值为

C.,则的值为

D.要得到函数的图像,只需要将的图像向右平移个单位

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年茂名市举办“好心杯”少年美术书法作品比赛,某赛区收到200件参赛作品,为了解作品质量,现从这些作品中随机抽取12件作品进行试评.成绩如下:67,82,78,86,96,81,73,84,76,59,85,93.

(1)求该样本的中位数和方差;

(2)若把成绩不低于85分(含85分)的作品认为为优秀作品,现在从这12件作品中任意抽取3件,求抽到优秀作品的件数的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】的展开式中,前3项的系数成等差数列,

1)求的值;

2)求展开式中二项式系数最大的项及各项系数和;

3)求展开式中含的项的系数及有理项.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某调查机构对某校学生做了一个是否同意生“二孩”抽样调查,该调查机构从该校随机抽查了100名不同性别的学生,调查统计他们是同意父母生“二孩”还是反对父母生“二孩”,现已得知100人中同意父母生“二孩”占60%,统计情况如下表:

同意

不同意

合计

男生

a

5

女生

40

d

合计

100

(1)求 ad 的值,根据以上数据,能否有97.5%的把握认为是否同意父母生“二孩”与性别有关?请说明理由;

(2)将上述调查所得的频率视为概率,现在从所有学生中,采用随机抽样的方法抽取4 位学生进行长期跟踪调查,记被抽取的4位学生中持“同意”态度的人数为 X,求 X 的分布列及数学期望.

附:

0.15

0.100

0.050

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图放置的边长为1的正方形沿轴滚动恰好经过原点.设顶点的轨迹方程是则对函数有下列判断①函数是偶函数;②对任意的都有;③函数在区间上单调递减;④函数的值域是;⑤.其中判断正确的序号是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】20168月巴西里约热内卢举办的第31届奥运会上,乒乓球比赛团体决赛实行五场三胜制,且任何一方获胜三场比赛即结束.甲、乙两个代表队最终进入决赛,根据双方排定的出场顺序及以往战绩统计分析,甲队依次派出的五位选手分别战胜对手的概率如下表:

出场顺序

1

2

3

4

5

获胜概率

若甲队横扫对手获胜(即30获胜)的概率是,比赛至少打满4场的概率为.

1)求的值;

2)求甲队获胜场数的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某机构用“10分制”调查了各阶层人士对某次国际马拉松赛事的满意度,现从调查人群中随机抽取16名,如图茎叶图记录了他们的满意度分数以小数点前的一位数字为茎,小数点后的一位数字为叶

(1)指出这组数据的众数和中位数;

(2)若满意度不低于分,则称该被调查者的满意度为“极满意”,求从这16人中随机选取3人,至少有2人满意度是“极满意”的概率;

(3)以这16人的样本数据来估计整个被调查群体的总体数据,若从该被调查群体人数很多任选3人,记表示抽到“极满意”的人数,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

1)若讨论函数的单调性;

2)若,在定义域内存在,使得,求证:

3)记的反函数,当时,求证:

查看答案和解析>>

同步练习册答案