【题目】已知的三个顶点,,,其外接圆为.对于线段上的任意一点,
若在以为圆心的圆上都存在不同的两点,使得点是线段的中点,则的半径的取值范围__________.
科目:高中数学 来源: 题型:
【题目】《中华人民共和国道路交通安全法》第47条的相关规定:机动车行经人行横道时,应当减速慢行;遇行人正在通过人行横道,应当停车让行,俗称“礼让斑马线”,《中华人民共和国道路交通安全法》 第90条规定:对不礼让行人的驾驶员处以扣3分,罚款50元的处罚.下表是某市一主干路口监控设备所抓拍的5个月内驾驶员不“礼 让斑马线”行为统计数据:
(1)请利用所给数据求违章人数与月份之间的回归直线方程;
(2)预测该路口 9月份的不“礼让斑马线”违章驾驶员人数;
(3)若从表中3、4月份分别抽取4人和2人,然后再从中任选2 人进行交规调查,求抽到的两人恰好来自同一月份的概率.
参考公式: , .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,直线与抛物线交于两点,直线与轴交于点,且直线恰好平分.
(1)求的值;
(2)设是直线上一点,直线交抛物线于另一点,直线交直线于点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,某池塘里浮萍的面积(单位:)与时间(单位:月)的关系为.关于下列说法正确的是( )
A.浮萍每月的增长率为
B.浮萍每月增加的面积都相等
C.第个月时,浮萍面积不超过
D.若浮萍蔓延到、、所经过的时间分别是、、,则
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设、分别是椭圆的左、右焦点.若是该椭圆上的一个动点,的最大值为1.
(1)求椭圆的方程;
(2)设直线与椭圆交于两点,点关于轴的对称点为(与不重合),则直线与轴是否交于一个定点?若是,请写出定点坐标,并证明你的结论;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2017年3月智能共享单车项目正式登陆某市,两种车型“小绿车”、“小黄车”采用分时段计费的方式,“小绿车”每30分钟收费元不足30分钟的部分按30分钟计算;“小黄车”每30分钟收费1元不足30分钟的部分按30分钟计算有甲、乙、丙三人相互独立的到租车点租车骑行各租一车一次设甲、乙、丙不超过30分钟还车的概率分别为,,,三人租车时间都不会超过60分钟甲、乙均租用“小绿车”,丙租用“小黄车”.
求甲、乙两人所付的费用之和等于丙所付的费用的概率;
2设甲、乙、丙三人所付的费用之和为随机变量,求的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在正方体中,、分别为、的中点,,,如图.
(1)若交平面于点,证明:、、三点共线;
(2)线段上是否存在点,使得平面平面,若存在确定的位置,若不存在说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com