精英家教网 > 高中数学 > 题目详情
19.设变量x,y满足约束条件$\left\{\begin{array}{l}{y≤3x-2}&{\;}\\{x-2y+1≤0}&{\;}\\{2x+y≤8}&{\;}\end{array}\right.$,则y-2x的最大值是(  )
A.-4B.-2C.-1D.0

分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,求得最优解,把最优解的坐标代入目标函数得答案.

解答 解:由约束条件$\left\{\begin{array}{l}{y≤3x-2}&{\;}\\{x-2y+1≤0}&{\;}\\{2x+y≤8}&{\;}\end{array}\right.$,作出可行域如图,
化目标函数z=y-2x为y=2x+z,
由图可知,当直线y=2x+z过A时,2x-y取得最大值:
由:$\left\{\begin{array}{l}{2x+y=8}\\{y=3x-2}\end{array}\right.$,可得A(2,4)时,z有最大值,4-2×2=0.
故选:D.

点评 本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知圆C:(x-3)2+(y-4)2=4.
(Ⅰ) 若直线l过点A(2,3)且被圆C截得的弦长为2$\sqrt{3}$,求直线l的方程;
(Ⅱ) 若直线l过点B(1,0)与圆C相交于P,Q两点,求△CPQ的面积的最大值,并求此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知向量$\overrightarrow a=(x,y)$(x,y∈R),$\overrightarrow b=(1,2)$,若x2+y2=1,则$|\overrightarrow a-\overrightarrow b|$的最大值为$\sqrt{5}$+1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,四边形ABCD为矩形,DA⊥平面ABE,AE=EB=BC=2,BF⊥平面ACE于点F,且点F在CE上.
(1)求证:AE⊥BE;
(2)求三棱锥C-ADE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.定义:称$\frac{n}{{p}_{1}+{p}_{2}+…+{p}_{n}}$为n个正数p1,p2,…,pn的“均倒数”,若数列{an}的前n项的“均倒数”为$\frac{1}{2n-1}$,则数列{an}的通项公式为4n-3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.命题“若ab=0,则a=0或b=0”的否定为若ab=0,则a≠0且b≠0”,.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知f(x)是定义在R上的函数,且满足f(x-1)=f(x+1)=f(1-x),当x∈[2,3]时,f(x)=-2(x-3)2+4,求当x∈[1,2]时,f(x)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知OA为球O的半径,垂直于OA的平面截球面得到圆M(M为截面与OA的交点).若圆M的面积为2π,OM=$\sqrt{2}$,则球的表面积为16π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若全集U={1,2,3,4,5},M={1,4},N={2,3},则(∁UM)∩N=(  )
A.{3,5}B.{2,3,5}C.{2,5}D.{2,3}

查看答案和解析>>

同步练习册答案