精英家教网 > 高中数学 > 题目详情
2.已知sinα=$\frac{12}{13}$,cosβ=$\frac{4}{5}$,且α是第二象限角,β是第四象限角,那么sin(α-β)等于(  )
A.$\frac{33}{65}$B.$\frac{63}{65}$C.-$\frac{16}{65}$D.-$\frac{56}{65}$

分析 由条件利用同角三角函数的基本关系求得cosα 和sinβ 的值,再利用两角差的正弦公式求得sin(α-β)的值

解答 解:因为α是第二象限角,且sinα=$\frac{12}{13}$,所以cosα=-$\sqrt{1-\frac{144}{169}}$=-$\frac{5}{13}$.
又因为β是第四象限角,cosβ=$\frac{4}{5}$,所以sinβ=-$\sqrt{1-\frac{16}{25}}$=-$\frac{3}{5}$.
sin(α-β)=sinαcosβ-cosαsinβ=$\frac{12}{13}$×$\frac{4}{5}$-(-$\frac{5}{13}$)×(-$\frac{3}{5}$)=$\frac{48-15}{65}$=$\frac{33}{65}$.
故选:A

点评 本题主要考查同角三角函数的基本关系,两角差的正弦公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.定义域为R的函数f(x)满足f(x+2)=2f(x),当x∈[-2,0]时,f(x)=x2+2x,若x∈[2,4]时,$f(x)≥2log_2^{(t+1)}$恒成立,则实数t的取值范围是(-1,-$\frac{3}{4}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若P=$\sqrt{a}$+$\sqrt{a+5}$,Q=$\sqrt{a+2}$+$\sqrt{a+3}$(a≥0),则P,Q的大小关系是(  )
A.P>QB.P=QC.P<QD.由a的取值确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.为了判断高中生的文理科选修是否与性别有关,随机调查了50名学生,得到如下2×2列联表:
 理科文科
1410
620
(1)画出列联表的等高条形图,并通过图形判断文理科选修与性别是否有关?
(2)利用列联表的独立性检验,能否在犯错误的概率不超过0.05的前提下认为选修文理科与性别有关?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=alnx+$\frac{1-{x}^{2}}{{x}^{2}}$,a∈R.
(1)若f(x)的最小值为0,求实数a的值;
(2)证明:当a=2时,不等式f(x)≥$\frac{1}{x}$-e1-x恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知i是虚数单位,且复数z1=3-bi,z2=1-2i,若$\frac{{z}_{1}}{{z}_{2}}$是实数,则实数b的值为(  )
A.6B.-6C.0D.$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知复数z=a(1+i)-2为纯虚数,则实数a=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设抛物线y2=2x与过其焦点的直线交于A,B两点,则$\overrightarrow{OA}$•$\overrightarrow{OB}$的值为(  )
A.-$\frac{3}{4}$B.$\frac{3}{4}$C.-3D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=|lg(x+1)|,实数a,b满足:$a<b,且f(a)=f({-\frac{b+1}{b+2}})$,则f(8a+2b+11)取最小值时,a+b的值为$-\frac{1}{2}$.

查看答案和解析>>

同步练习册答案