精英家教网 > 高中数学 > 题目详情

【题目】如图,正方形所在平面,M的中点,二面角的大小为.

1)设l是平面与平面的交线,证明

2)在棱是否存在一点N,使的二面角.若不存在,说明理由:若存在,求.

【答案】1)见解析(2)存在,

【解析】

1)先证明平面,再利用线面平行的性质即得证;

2)易知二面角的平面角,由此建立空间直角坐标系,并求出各点的坐标,设,求出平面的法向量,根据的二面角为,建立方程,解出即可得出结论.

解:(1)证明:∵四边形为正方形,

在平面内,不在平面内,

平面

又平面过直线,且平面平面

2)∵正方形所在平面,

∴易知二面角的平面角即为

A为坐标原点,分别为x轴,y轴,z轴建立如图所示的空间直角坐标系,不妨设正方形的边长为2

,设

易得平面的一个法向量为

设平面的一个法向量为,又

,则可取

,解得

故存在存在一点N,使的二面角,且.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在矩形中,分别为边的中点,沿折起,点折至处(不重合),若分别为线段的中点,则在折起过程中(

A.可以与垂直

B.不能同时做到平面平面

C.时,平面

D.直线与平面所成角分别为能够同时取得最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为为参数),且曲线上的点对应的参数,以为极点,轴的正半轴为极轴建立极坐标系.

(1)求曲线的普通方程和极坐标方程;

(2)若曲线上的两点满足,过于点,求证:点在以为圆心的定圆上.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的一个顶点为,离心率,直线交椭圆于两点.

1)若直线的方程为,求弦的长;

2)如果的重心恰好为椭圆的右焦点,求直线方程的一般式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班级在一次数学竞赛中为全班学生设置了一等奖、二等奖、三等奖以及参与奖,各个奖品的单价分别为:一等奖元、二等奖元、三等奖元、参与奖元,获奖人数的分配情况如图,则以下说法不正确的是( ).

A. 获得参与奖的人数最多

B. 各个奖项中参与奖的总费用最高

C. 购买每件奖品费用的平均数为

D. 购买的三等奖的奖品件数是一、二等奖的奖品件数和的二倍

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心在坐标原点,焦点在轴上,左顶点为,左焦点为,点在椭圆上,直线与椭圆交于 两点,直线 分别与轴交于点

(Ⅰ)求椭圆的方程;

(Ⅱ)以为直径的圆是否经过定点?若经过,求出定点的坐标;若不经过,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】自201611日起,我国全面二孩政策正式实施,这次人口与生育政策的历史性调整,使得要不要再生一个生二孩能休多久产假等问题成为千千万万个家庭在生育决策上避不开的话题.为了解针对产假的不同安排方案形成的生育意愿,某调查机构随机抽取了200户有生育二胎能力的适龄家庭进行问卷调查,得到如下数据:

产假安排(单位:周)

14

15

16

17

18

有生育意愿家庭数

4

8

16

20

26

1)若用表中数据所得的频率代替概率,面对产假为14周与16周,估计某家庭有生育意愿的概率分别为多少?

2)假设从5种不同安排方案中,随机抽取2种不同安排分别作为备选方案,然后由单位根据单位情况自主选择.

求两种安排方案休假周数和不低于32周的概率;

如果用表示两种方案休假周数之和.求随机变量的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数 其中R …为自然对数的底数

)当时, 恒成立,求的取值范围;

)求证: (参考数据: )

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是动点,以为直径的圆与圆内切.

(1)求的轨迹的方程;

(2)设是圆轴的交点,过点的直线与交于两点,直线交直线于点,求证:三点共线.

查看答案和解析>>

同步练习册答案