【题目】已知抛物线C:y2=4x的焦点为F,过点F的直线l与C相交于A,B两点,若|AB|=8,求直线l的方程.
【答案】
【解析】试题分析:设直线l的方程为:y=k(x-1),代入y2=4x,整理得k2x2-(2k2+4)x+k2=0,利用韦达定理和抛物线的定义,能够求出直线l的方程.
试题解析:
抛物线y2=4x的焦点为F(1,0),当直线l斜率不存在时,|AB|=4,不合题意.设直线l的方程为y=k(x-1),代入y2=4x,整理得k2x2-(2k2+4)x+k2=0.
设A(x1,y1),B(x2,y2),由题意知k≠0,
则x1+x2=.
由抛物线定义知,
|AB|=|AF|+|BF|=x1+1+x2+1=x1+x2+2,
∴x1+x2+2=8,即+2=8.
解得k=±1.
所以直线l的方程为y=±(x-1),
即x-y-1=0,x+y-1=0.
科目:高中数学 来源: 题型:
【题目】来自某校一班和二班的共计9名学生志愿服务者被随机平均分配到运送矿泉水、清扫卫生、维持秩序这三个岗位服务,且运送矿泉水岗位至少有一名一班志愿者的概率是.
(Ⅰ)求清扫卫生岗位恰好一班1人、二班2人的概率;
(Ⅱ)设随机变量为在维持秩序岗位服务的一班的志愿者的人数,求分布列及期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知命题p:不等式(m-1)x2+(m-1)x+2>0的解集是R,命题q:sin x+cos x>m.如果对于任意的x∈R,命题p是真命题且命题q为假命题,求m的范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知中心在坐标原点、焦点在x轴上的椭圆,它的离心率为,且与直线x+y-1=0相交于M、N两点,若以MN为直径的圆经过坐标原点,求椭圆的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在甲、乙两个盒子中分别装有标号为1、2、3、4的四个球,现从甲、乙两个盒子中各取出1个球,每个球被取出的可能性相等.
(1)求取出的两个球上标号为相同数字的概率;
(2)求取出的两个球上标号之积能被3整除的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)是奇函数,并且在R上为增函数,若0≤θ≤ 时,f(msinθ)+f(1﹣m)>0恒成立,则实数m的取值范围是( )
A.(0,1)
B.(﹣∞,0)
C.(﹣∞,1)
D.(﹣∞, )
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,设P是圆x2+y2=25上的动点,点D是P在x轴上的投影,M为PD上一点,且|MD|=|PD|,当P在圆上运动时,求点M的轨迹C的方程。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校高二年级学生会有理科生4名,其中3名男同学;文科生3名,其中有1名男同学.从这7名成员中随机抽4人参加高中示范校验收活动问卷调查.
(Ⅰ)设为事件“选出的4人中既有文科生又有理科生”,求事件的概率;
(Ⅱ)设为选出的4人中男生人数与女生人数差的绝对值,求随机变量的分布列和数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com