精英家教网 > 高中数学 > 题目详情

【题目】如图所示,在矩形ABCD中,AB=3BC=3,沿对角线BD将△BCD折起,使点C移到C′点,且C′点在平面ABD上的射影O恰在AB上.

(1)求证:BC′⊥平面ACD

(2)求点A到平面BCD的距离.

【答案】(1)详见解析(2)

【解析】

(1)由题设可得平面,从可得,再根据可得平面,故可得,结合可得要证明的线面垂直.

(2)过,可证到平面的距离,最后利用得到的长.

(1)证明 ∵点在平面上的射影上,

平面平面, ∴

又∵

平面,又平面, ∴

又∵,∴

,∴平面

(2)

如图所示,过,垂足为,连接

平面平面, ∴,又

平面

的长就是点到平面的距离.

平面,又平面, ∴

中,

中,

中,由面积关系,得

∴点到平面的距离是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,椭圆C过点,焦点,圆O的直径为

(1)求椭圆C及圆O的方程;

(2)设直线l与圆O相切于第一象限内的点P

①若直线l与椭圆C有且只有一个公共点,求点P的坐标;

②直线l与椭圆C交于两点.若的面积为,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】凤鸣山中学的高中女生体重 (单位:kg)与身高(单位:cm)具有线性相关关系,根据一组样本数据),用最小二乘法近似得到回归直线方程为,则下列结论中不正确的是(

A.具有正线性相关关系

B.回归直线过样本的中心点

C.若该中学某高中女生身高增加1cm,则其体重约增加0.85kg

D.若该中学某高中女生身高为160cm,则可断定其体重必为50.29kg.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若曲线在点处的切线方程为,求的值;

(2)当时,,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C的两个顶点分别为A(2,0),B(2,0),焦点在x轴上,离心率为

(Ⅰ)求椭圆C的方程;

(Ⅱ)点Dx轴上一点,过Dx轴的垂线交椭圆C于不同的两点MN,过DAM的垂线交BN于点E.求证:△BDE与△BDN的面积之比为4:5.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】三国时期吴国数学家赵爽所注《周牌算经》中给出了勾股定理的绝妙证明.右面是赵爽的弦图及注文,弦图是一个以勾股形之弦为边的正方形,其面积称为弦实,图中包含四个全等的勾股形及一个小正方形,分别涂成红(朱)色及黄色,其面积称为朱实黄实,利用(股勾)朱实黄实弦实,化简,得勾,设勾股中勾股比为,若向弦图内随机抛掷颗图钉(大小忽略不计),则落在黄色图形内的图钉颗数大约为( )(参考数据

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-5:不等式选讲]

已知函数

(Ⅰ)求不等式的解集;

(Ⅱ)若,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为为参数).以坐标原点为原点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为.

(1)求曲线的普通方程和直线的直角坐标方程;

(2)设直线轴的交点为,过点作倾斜角为的直线与曲线交于两点,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线的右顶点到其一条渐近线的距离等于,抛物线的焦点与双曲线的右焦点重合,则抛物线上的动点到直线距离之和的最小值为( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步练习册答案