精英家教网 > 高中数学 > 题目详情

(本小题12分)已知f(x)=在区间[-1,1]上是增函数.
(Ⅰ)求实数a的值组成的集合A;
(Ⅱ)设关于x的方程f(x)=的两个非零实根为x1x2.试问:是否存在实数m,使得不等式m2+tm+1≥|x1x2|对任意a∈A及t∈[-1,1]恒成立?若存在,求m的取值范围;若不存在,请说明理由.

(1) A={a|-1≤a≤1} (2) {m|m≥2,或m≤-2}

解析试题分析:解:(Ⅰ)f'(x)=4+2 ∵f(x)在[-1,1]上是增函数,
f'(x)≥0对x∈[-1,1]恒成立,
x2ax-2≤0对x∈[-1,1]恒成立.       ①
(x)=x2ax-2,
方法一:
          (1)=1-a-2≤0,
①                              -1≤a≤1,
(-1)=1+a-2≤0.
∵对x∈[-1,1],只有当a=1时,f'(-1)=0以及当a=-1时,f'(1)=0
∴A={a|-1≤a≤1}.
方法二:

(Ⅱ)由
∵△=a2+8>0
x1x2是方程x2ax-2=0的两非零实根,

从而|x1x2|==.
∵-1≤a≤1,∴|x1-x2|=≤3.
要使不等式m2+tm+1≥|x1x2|对任意a∈A及t∈[-1,1]恒成立,
当且仅当m2+tm+1≥3对任意t∈[-1,1]恒成立,
即m2+tm-2≥0对任意t∈[-1,1]恒成立.       ②
g(t)=m2+tm-2=mt+(m2-2),
方法一:
②g(-1)=m2-m-2≥0,
g(1)=m2+m-2≥0,
m≥2或m≤-2.
所以,存在实数m,使不等式m2+tm+1≥|x1x2|对任意a∈A及t∈[-1,1]恒成立,其取值范围是{m|m≥2,或m≤-2}.
方法二:
当m=0时,②显然不成立;
当m≠0时,

 m≥2或m≤-2.
所以,存在实数m,使不等式m2+tm+1≥|x1x2|对任意a∈A及t∈[-1,1]恒成立,其取值范围是{m|m≥2,或m≤-2}.
考点:函数单调性和函数与方程
点评:解决该试题的关键是能利用导数的符号判定函数单调性,同时能结合方程的思想来求解参数的范围,属于基础题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数处取得极值.
(1)求实数的值;
(2)若关于的方程在区间上恰有两个不同的实数根,求实数的取值范围;
(3)证明:对任意的正整数,不等式都成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数.
(I)若曲线与曲线在它们的交点处具有公共切线,求的值;
(II)当时,若函数在区间内恰有两个零点,求的取值范围;
(III)当时,求函数在区间上的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数为常数,),且这两函数的图像有公共点,并在该公共点处的切线相同.
(Ⅰ)求实数的值;
(Ⅱ)若时,恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数的单调递增区间;
(2)若不等式在区间(0,+上恒成立,求的取值范围;
(3)求证: 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
设函数.
(1)若的两个极值点为,且,求实数的值;
(2)是否存在实数,使得上的单调函数?若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知在区间上是增函数,在区间上是减函数,且
(1)求函数的解析式.
(2)若在区间上恒有,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题14分)已知函数处取得极值,且在处的切线的斜率为1。
(Ⅰ)求的值及的单调减区间;
(Ⅱ)设>0,>0,,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(满分12分)已知函数.(Ⅰ) 求上的最小值;(Ⅱ) 若存在是常数,=2.71828)使不等式成立,求实数的取值范围;
(Ⅲ) 证明对一切都有成立.

查看答案和解析>>

同步练习册答案