精英家教网 > 高中数学 > 题目详情
如图,已知抛物线C的顶点在原点,焦点F在x轴上,抛物线上的点A到F的距离为2,且A的横坐标为1.过A点作抛物线C的两条动弦AD、AE,且AD、AE的斜率满足kAD•kAE=2.
(1)求抛物线C的方程;
(2)直线DE是否过某定点?若过某定点,请求出该点坐标;若不过某定点,请说明理由.
分析:(1)设抛物线方程为C:y2=2px(p>0),由抛物线定义及|AF|=2即可求得p值;
(2)设D(x1,y1),E(x2,y2),DE方程为x=my+n(m≠0),直线DE方程与抛物线方程联立消x得y的方程,由韦达定理及kAD•kAE=2可得关于m,n的关系式,从而直线DE方程可用m表示,由直线方程的点斜式即可求得定点.
解答:解:(1)设抛物线方程为C:y2=2px(p>0),
由其定义知|AF|=1+
p
2
,又|AF|=2,
所以p=2,y2=4x;
(2)易知A(1,2),设D(x1,y1),E(x2,y2),
DE方程为x=my+n(m≠0),
把DE方程代入C,并整理得y2-4my-4n=0,△=16(m2+n)>0,y1+y2=4m,y1y2=-4n,
kADkAE=
y1-2
x1-1
y2-2
x2-1
=2
y
2
1
=4x1
y
2
2
=4x2
,得y1y2+2(y1+y2)=4,即-4n+2×4m=4,
所以n=2m-1,代入DE方程得:x=my+2m-1,即(y+2)m=x+1,
故直线DE过定点(-1,-2).
点评:本题考查直线与圆锥曲线的位置关系及抛物线方程的求解,考查直线方程的点斜式,考查学生分析解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•徐州一模)如图,已知抛物线C:y2=4x的焦点为F,过F的直线l与抛物线C交于A(x1,y1)(y1>0),B(x2,y2)两点,T为抛物线的准线与x轴的交点.
(1)若
TA
TB
=1
,求直线l的斜率;
(2)求∠ATF的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知抛物线C:y2=4x焦点为F,直线l经过点F且与抛物线C相交于A、B两点.
(Ⅰ)若线段AB的中点在直线y=2上,求直线l的方程;
(Ⅱ)若|AB|=20,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源:福建省莆田一中2012届高三第一学段考试数学理科试题(人教版) 题型:044

如图,已知抛物线C的顶点在原点O,焦点为F(0,1).

(Ⅰ)求抛物线C的方程;

(Ⅱ)在抛物线C上是否存在点P,使得过点P的直线交抛物线C于另一点Q,满足PF⊥QP,且PQ与抛物线C在点P处的切线垂直?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年陕西省西安一中高三(上)期末数学试卷(理科)(解析版) 题型:解答题

如图,已知抛物线C的顶点在原点,焦点F在x轴上,抛物线上的点A到F的距离为2,且A的横坐标为1.过A点作抛物线C的两条动弦AD、AE,且AD、AE的斜率满足kAD•kAE=2.
(1)求抛物线C的方程;
(2)直线DE是否过某定点?若过某定点,请求出该点坐标;若不过某定点,请说明理由.

查看答案和解析>>

同步练习册答案