精英家教网 > 高中数学 > 题目详情

【题目】经过多年的运作,双十一抢购活动已经演变成为整个电商行业的大型集体促销盛宴.为迎接2014双十一网购狂欢节,某厂家拟投入适当的广告费,对网上所售产品进行促销.经调查测算,该促销产品在双十一的销售量p万件与促销费用x万元满足(其中a为正常数).已知生产该产品还需投入成本万元(不含促销费用),产品的销售价格定为

元/件,假定厂家的生产能力完全能满足市场的销售需求.

(1)将该产品的利润y万元表示为促销费用x万元的函数;

(2)促销费用投入多少万元时,厂家的利润最大?

【答案】(1);(2)时,促销费用投入1万元,厂家的利润最大;当时,促销费用投入万元,厂家的利润最大.

【解析】

(1)由题意知,

代入化简得:.

(2)

当且仅当时,上式取等号.

时,促销费用投入1万元时,厂家的利润最大;

时,上单调递增,

所以时,函数有最大值,即促销费用投入万元时,厂家的利润最大.

综上,当时,促销费用投入1万元,厂家的利润最大;

时,促销费用投入万元,厂家的利润最大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,证明:上恒成立;

2)若函数有唯一零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的定义域是,且,当时,.

1)判断的奇偶性,并说明理由;

2)求在区间上的解析式;

3)是否存在整数,使得当时,不等式有解?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左焦点为F,短轴的两个端点分别为AB,且为等边三角形.

1)求椭圆C的方程;

2)如图,点M在椭圆C上且位于第一象限内,它关于坐标原点O的对称点为N;过点Mx轴的垂线,垂足为H,直线与椭圆C交于另一点J,若,试求以线段为直径的圆的方程;

3)已知是过点A的两条互相垂直的直线,直线与圆相交于两点,直线与椭圆C交于另一点R;求面积取最大值时,直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】市场上有一种新型的强力洗衣粉,特点是去污速度快,已知每投放)个单位的洗衣粉液在一定量水的洗衣机中,它在水中释放的浓度(克/升)随着时间(分钟)变化的函数关系式近似为,其中,若多次投放,则某一时刻水中的洗衣液浓度为每次投放的洗衣液在相应时刻所释放的浓度之和,根据经验,当水中洗衣液的浓度不低于4(克/升)时,它才能起有效去污的作用.

1)若只投放一次4个单位的洗衣液,则有效去污时间可能达几分钟?

2)若先投放2个单位的洗衣液,6分钟后投放个单位的洗衣液,要使接下来的4分钟中能够持续有效去污,试求的最小值(精确到0.1,参考数据: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面为梯形, 底面 . 

1)求证:平面 平面

2)设上的一点,满足,若直线与平面所成角的正切值为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过双曲线的右支上的一点P作一直线l与两渐近线交于AB两点,其中P的中点;

1)求双曲线的渐近线方程;

2)当P坐标为时,求直线l的方程;

3)求证:是一个定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若数列项和为

(1)若首项,且对于任意的正整数均有,(其中为正实常数),试求出数列的通项公式.

(2)若数列是等比数列,公比为,首项为,为给定的正实数,满足:①,且②对任意的正整数,均有;试求函数的最大值(用表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆过圆的圆心,且右焦点与抛物线的焦点重合.

(1)求椭圆的方程;

(2)过点作直线交椭圆两点,若,求直线的方程.

查看答案和解析>>

同步练习册答案