精英家教网 > 高中数学 > 题目详情
10.如图,在正方体ABCD-A1B1C1D1中,E为A1C1的中点,则异面直线CE与BD所成的角为(  )
A.30°B.45°C.60°D.90°

分析 连接AC,BD,则AC⊥BD,证明AC⊥平面BDD1,可得AC⊥BD1,利用EF∥AC,即可得出结论.

解答 解:连接AC,底面是正方形,则AC⊥BD,几何体是正方体,可知
∴BD⊥AA1,AC∩AA1=A,
∴BD⊥平面CC1AA1
∵CE?平面CC1AA1
∴BD⊥CE,
∴异面直线BD、CE所成角是90°.
故选:D.

点评 本题考查异面直线BD1、EF所成角,考查线面垂直的判定,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.某校运动会开幕式上举行升旗仪式,在坡度为15°的看台上,同一列上的第一排和最后一排测得旗杆顶部的仰角分别为60°和30°,第一排和最后一排的距离为10m(如图所示),则旗杆的高度为(  )
A.10 mB.30 mC.10mD.10m

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知方程$\frac{x^2}{2-k}+\frac{y^2}{2k-1}$=1表示焦点在y轴上的椭圆,则实数k的取值范围是1<k<2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知f(n)=1+$\frac{1}{2}+\frac{1}{3}+…+\frac{1}{n}$(n∈N*),经计算得f(4)>2,f(8)>$\frac{5}{2}$,f(16)>3,f(32)>$\frac{7}{2}$,则可以归纳出一般结论:当n≥2时,有$f({2^n})>\frac{n+2}{2}$(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知数列{an}中,a1=3,a2=6,an+2=an+1-an,则a2015=(  )
A.-6B.6C.-3D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知抛物线的顶点在原点,其准线过双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的一个焦点,又若抛物线与双曲线相交于点A($\frac{3}{2}$,$\sqrt{6}$),B($\frac{3}{2}$,-$\sqrt{6}$),求此两曲线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数y=2|1+x|的图象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知f(x)=$\frac{{2}^{x}+a}{{2}^{x}-1}$.
(1)求函数定义域;
(2)若f(x)为奇函数,求实数a的值;
(3)在(2)的条件下利用定义证明:f(x)在(0,+∞)为减函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在平面直角坐标系中,点P($\frac{1}{2}$,$\frac{2}{3}$)在角α的终边上,点Q($\frac{1}{3}$,-1)在角β的终边上,点M(sin$\frac{2π}{3}$,cos$\frac{2π}{3}$)在角γ终边上.
(1)求sinα,cosβ,tanγ的值;
(2)求sin(α+2β)的值.

查看答案和解析>>

同步练习册答案