精英家教网 > 高中数学 > 题目详情

【题目】已知函数,函数.

(1)若函数的最小值为-16,求实数的值;

(2)若函数在区间上是单调减函数,求实数的取值范围;

(3)当时,不等式的解集为,求实数的取值范围.

【答案】(1)8或-32;(2);(3)

【解析】试题分析:(1)设,由,可得,化简 ,根据对称轴与的关系,求出函数的最小值可得实数的值;(2)由函数的图象知:函数的减区间为 由此可得实数的取值范围;(3)不等式可以化为,即,则问题转化为当时,不等式的解集为,令),讨论函数的单调性和最小值,即可求实数的取值范围.

试题解析:(1)设,又,则

化简得 ,对称轴方程为

,即时,有,解得

,即时,有,解得(舍);

所以实数的值为8或-32

2)由函数的图象知:函数的减区间为

,则

则实数的取值范围为

3)不等式可以化为,即

因为当时,不等式的解集为

所以当时,不等式的解集为

),则函数在区间上单调增函数,在上单调减函数,所以,所以,从而,即所求实数的取值范围

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在正方体ABCD﹣A1B1C1D1中,E、F分别是BB1、CD的中点.
(1)求证:平面AED⊥平面A1FD1
(2)在AE上求一点M,使得A1M⊥平面ADE.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以直角坐标系的原点O为极点,x轴的正半轴为极轴建立极坐标系.
(1)将直线l: (t为参数)化为极坐标方程;
(2)设P是(1)中直线l上的动点,定点A( ),B是曲线ρ=﹣2sinθ上的动点,求|PA|+|PB|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥S﹣ABCD中,△ABD是正三角形,CB=CD,SC⊥BD.
(1)求证:SA⊥BD;
(2)若∠BCD=120°,M为棱SA的中点,求证:DM∥平面SBC.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线y2=4 x的焦点为F,A、B为抛物线上两点,若 =3 ,O为坐标原点,则△AOB的面积为(
A.8
B.4
C.2
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)求函数的最小正周期和单调递增区间;

(Ⅱ)当时,方程恰有两个不同的实数根,求实数的取值范围;

(Ⅲ)将函数的图象向右平移)个单位后所得函数的图象关于原点中心对称,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=xlnx+ax,a∈R.
(1)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)若对x>1,f(x)>(b+a﹣1)x﹣b恒成立,求整数b的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动圆M恒过点(0,1),且与直线y=﹣1相切.
(1)求圆心M的轨迹方程;
(2)动直线l过点P(0,﹣2),且与点M的轨迹交于A、B两点,点C与点B关于y轴对称,求证:直线AC恒过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为奇函数 为偶函数

(1)求的解析式及定义域

(2)若关于的不等式恒成立求实数的取值范围

(3)如果函数若函数有两个零点求实数的取值范围

查看答案和解析>>

同步练习册答案